Nesting and instability in a two-dimensional system

被引:0
|
作者
Lin, F [1 ]
Chen, XB
Fu, RT
Sun, X
Kawazoe, Y
机构
[1] Univ Yangzhou, Dept Phys, Yangzhou 225002, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[3] Acad Sinica, Natl Lab Infrared Phys, Shanghai 200433, Peoples R China
[4] Inst Mol Sci, Okazaki, Aichi 444, Japan
[5] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 98077, Japan
来源
PHYSICA STATUS SOLIDI B-BASIC RESEARCH | 1998年 / 206卷 / 02期
关键词
D O I
10.1002/(SICI)1521-3951(199804)206:2<559::AID-PSSB559>3.0.CO;2-#
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Different from one-dimensional systems, nesting in two-dimensional (2D) systems is not perfect but some 2D systems still have Peierls instability and hidden nesting. This paper shows that the nest nearest neighbor (NNN) hopping which controls the nesting deviation, heavily suppresses the Peierls instability. There is a critical value for the NNN hopping, beyond which the Peierls instability is destroyed and the hidden nesting is lost. The impact of such change to other phase transitions is discussed.
引用
收藏
页码:559 / 565
页数:7
相关论文
共 50 条
  • [31] Amplitude Instability in Two-Dimensional Hexagonal Clusters
    Vaulina, O. S.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2018, 127 (03) : 503 - 507
  • [32] Resonant instability in two-dimensional vortex arrays
    Luzzatto-Fegiz, Paolo
    Williamson, Charles H. K.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2128): : 1164 - 1185
  • [33] Critical thickness for two-dimensional tearing instability
    Tanaka, KG
    Shinohara, I
    Fujimoto, M
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (03) : L038081 - 4
  • [34] Two-dimensional modulation instability of wind waves
    Grimshaw, Roger
    JOURNAL OF OCEAN ENGINEERING AND MARINE ENERGY, 2019, 5 (04) : 413 - 417
  • [35] Two-dimensional instability of flow in a rough channel
    Floryan, JM
    PHYSICS OF FLUIDS, 2005, 17 (04) : 044101 - 1
  • [36] On the instability of a two-dimensional plane plasma crystal
    D. N. Klochkov
    N. G. Gusein-zade
    Plasma Physics Reports, 2007, 33 : 646 - 654
  • [37] Pomeranchuk instability on a two-dimensional frustrated lattice
    Chen, Hui-Min
    Zhao, Hui
    Wu, Chang-Qin
    PHYSICAL REVIEW B, 2010, 82 (24):
  • [38] Boundary instability of a two-dimensional electron fluid
    Dyakonov, M. I.
    SEMICONDUCTORS, 2008, 42 (08) : 984 - 988
  • [39] Instability of two-dimensional solitons in discrete systems
    Laedke, E.W.
    Spatschek, K.H.
    Mezentsev, V.K.
    Musher, S.L.
    Ryzhenkova, I.V.
    Turitsyn, S.K.
    JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi Teoreticheskoi Fiziki), 1995, 62 (08):
  • [40] INSTABILITY OF RESISTIVE STATE IN TWO-DIMENSIONAL SUPERCONDUCTORS
    IVANCHENKO, YM
    MEDVEDYEV, YV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1987, 93 (06): : 2032 - 2036