Nesting and instability in a two-dimensional system

被引:0
|
作者
Lin, F [1 ]
Chen, XB
Fu, RT
Sun, X
Kawazoe, Y
机构
[1] Univ Yangzhou, Dept Phys, Yangzhou 225002, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[3] Acad Sinica, Natl Lab Infrared Phys, Shanghai 200433, Peoples R China
[4] Inst Mol Sci, Okazaki, Aichi 444, Japan
[5] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 98077, Japan
来源
PHYSICA STATUS SOLIDI B-BASIC RESEARCH | 1998年 / 206卷 / 02期
关键词
D O I
10.1002/(SICI)1521-3951(199804)206:2<559::AID-PSSB559>3.0.CO;2-#
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Different from one-dimensional systems, nesting in two-dimensional (2D) systems is not perfect but some 2D systems still have Peierls instability and hidden nesting. This paper shows that the nest nearest neighbor (NNN) hopping which controls the nesting deviation, heavily suppresses the Peierls instability. There is a critical value for the NNN hopping, beyond which the Peierls instability is destroyed and the hidden nesting is lost. The impact of such change to other phase transitions is discussed.
引用
收藏
页码:559 / 565
页数:7
相关论文
共 50 条
  • [1] Magnetization instability in a two-dimensional system
    Daneshvar, AJ
    Ford, CJB
    Simmons, MY
    Khaetskii, AV
    Hamilton, AR
    Pepper, M
    Ritchie, DA
    PHYSICAL REVIEW LETTERS, 1997, 79 (22) : 4449 - 4452
  • [2] Nesting in two-dimensional lattices
    Ling, Fan
    Sun, Xin
    Wuli Xuebao/Acta Physica Sinica, 1994, 43 (08): : 1318 - 1329
  • [3] Imperfect nesting and Peierls instability for a two-dimensional tight-binding model
    Yuan, Q
    Nunner, T
    Kopp, T
    EUROPEAN PHYSICAL JOURNAL B, 2001, 22 (01): : 37 - 42
  • [4] Imperfect nesting and Peierls instability for a two-dimensional tight-binding model
    Q. Yuan
    T. Nunner
    T. Kopp
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 22 : 37 - 42
  • [6] The nesting problem of two-dimensional semantics
    Xu, Zhaoqing
    PHILOSOPHICAL FORUM, 2021, 52 (02): : 177 - 183
  • [7] Two-dimensional semantics and the nesting problem
    Chalmers, David J.
    Rabern, Brian
    ANALYSIS, 2014, 74 (02) : 210 - 224
  • [8] Instability in a two-dimensional dilute interacting Bose system
    Mullin, WJ
    Holzmann, M
    Laloë, F
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) : 269 - 274
  • [9] Instability in a Two-Dimensional Dilute Interacting Bose System
    W. J. Mullin
    M. Holzmann
    F. Laloë
    Journal of Low Temperature Physics, 2000, 121 : 269 - 274
  • [10] Research on Two-dimensional Irregular Parts Nesting with Ant Colony System
    Zhong Xiang-qiang
    Liang Li-dong
    ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2010, : 541 - 544