The biological function of an insect antifreeze protein simulated by molecular dynamics

被引:93
|
作者
Kuiper, Michael J. [1 ]
Morton, Craig J. [2 ]
Abraham, Sneha E. [3 ]
Gray-Weale, Angus [3 ]
机构
[1] Univ Melbourne, Victorian Life Sci Computat Initiat, Carlton, Vic 3053, Australia
[2] St Vincents Inst Med Res, ACRF Rational Drug Discovery Ctr, Fitzroy, Vic 3065, Australia
[3] Univ Melbourne, Sch Chem, Melbourne, Vic, Australia
来源
ELIFE | 2015年 / 4卷
基金
澳大利亚研究理事会;
关键词
ICE GROWTH-INHIBITION; WINTER FLOUNDER; BETA-HELIX; COMPUTER-SIMULATION; ICE/WATER INTERFACE; CRYSTAL-STRUCTURE; WATER INTERFACE; BINDING; MECHANISM; POLYPEPTIDE;
D O I
10.7554/eLife.05142
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antifreeze proteins (AFPs) protect certain cold-adapted organisms from freezing to death by selectively adsorbing to internal ice crystals and inhibiting ice propagation. The molecular details of AFP adsorption-inhibition is uncertain but is proposed to involve the Gibbs-Thomson effect. Here we show by using unbiased molecular dynamics simulations a protein structure-function mechanism for the spruce budworm Choristoneura fumiferana AFP, including stereo-specific binding and consequential melting and freezing inhibition. The protein binds indirectly to the prism ice face through a linear array of ordered water molecules that are structurally distinct from the ice. Mutation of the ice binding surface disrupts water-ordering and abolishes activity. The adsorption is virtually irreversible, and we confirm the ice growth inhibition is consistent with the Gibbs-Thomson law.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Molecular dynamics studies using GPU and AMBER CUDA implementation of an antifreeze protein
    Peramo, Antonio
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [22] Structure and dynamics of β-helical antifreeze protein
    Daley, ME
    Spyracopoulos, L
    Jia, ZH
    Davies, PL
    Sykes, BD
    BIOCHEMISTRY, 2002, 41 (17) : 5515 - 5525
  • [23] Operation of Kelvin Effect in the Activities of an Antifreeze Protein: A Molecular Dynamics Simulation Study
    Midya, Uday Sankar
    Bandyopadhyay, Sanjoy
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (12): : 3079 - 3087
  • [24] STUDIES OF STRUCTURE-FUNCTION RELATIONSHIP OF INSECT ANTIFREEZE PROTEINS
    TANG, W
    BAUST, JG
    FASEB JOURNAL, 1994, 8 (07): : A1353 - A1353
  • [25] Investigating the effects of an insect antifreeze protein on ice nucleation and crystallization
    Ambrogi, Emma
    Smith, Emily Asenath
    Hoch, Garrett
    Sreter, Jonathan
    Jovic, Katarina
    Varga, Krisztina
    Baures, Paul
    Tsavalas, John
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [26] Structure and Dynamics of Antifreeze Protein-Model Membrane Interactions: A Combined Spectroscopic and Molecular Dynamics Study
    Kar, Rajiv K.
    Mroue, Kamal H.
    Kumar, Dinesh
    Tejo, Bimo A.
    Bhunia, Anirban
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (05): : 902 - 914
  • [27] Laboratory-Scale Isolation of Insect Antifreeze Protein for Cryobiology
    Tomalty, Heather E.
    Graham, Laurie A.
    Eves, Robert
    Gruneberg, Audrey K.
    Davies, Peter L.
    BIOMOLECULES, 2019, 9 (05):
  • [28] Induced Ice Melting by the Snow Flea Antifreeze Protein from Molecular Dynamics Simulations
    Todde, Guido
    Whitman, Christopher
    Hovmoller, Sven
    Laaksonen, Aatto
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (47): : 13527 - 13534
  • [29] Simulated dynamics and biological macromolecules
    Moraitakis, G
    Purkiss, AG
    Goodfellow, JM
    REPORTS ON PROGRESS IN PHYSICS, 2003, 66 (03) : 383 - 406
  • [30] Protein-water dynamics in antifreeze protein III activity
    Xu, Yao
    Baeumer, Alexander
    Meister, Konrad
    Bischak, Connor G.
    DeVries, Arthur L.
    Leitner, David M.
    Havenith, Martina
    CHEMICAL PHYSICS LETTERS, 2016, 647 : 1 - 6