Two-dimensional extension of the reservoir technique for some linear advection systems

被引:4
|
作者
Alouges, Francois
Le Coq, Gerard
Lorin, Emmanuel [1 ]
机构
[1] Univ Orsay, Dept Math, F-91405 Orsay, France
[2] Ecole Normale Super, Ctr Math & Leurs Applicat, F-94235 Cachan, France
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, Canada
关键词
multidimensional convection; finite volume schemes; reservoirs; numerical diffusion;
D O I
10.1007/s10915-006-9115-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an extension of the reservoir technique (see, [Alouges et al., Submitted; Alouges et al.(2002a), In: Finite volumes for complex applications, III, pp. 247-254, Marseille; Alouges et al.(2002b), C. R. Math. Acad. Sci. Paris, 335(7), 627-632.]) for two-dimensional advection equations with non-constant velocities. The purpose of this work is to make decrease the numerical diffusion of finite volume schemes, correcting the numerical directions of propagation, using a so-called corrector vector combined with the reservoirs. We then introduce an object called velocities rose in order to minimize the algorithmic complexity of this method.
引用
收藏
页码:419 / 458
页数:40
相关论文
共 50 条
  • [31] Cancellation of linear intersymbol interference for two-dimensional storage systems
    Van Beneden, S.
    Riani, J.
    Bergmans, J. W. M.
    Immink, A. H. J.
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (08) : 2096 - 2106
  • [32] State Estimation for Two-Dimensional Linear Systems with Stochastic Parameters
    Cui, Jia-Rui
    Hu, Guang-Da
    IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6, 2009, : 1645 - +
  • [33] Cancellation of Linear Intersymbol Interference for Two-Dimensional Storage Systems
    Van Beneden, S.
    Riani, J.
    Bergmans, J. W. M.
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 3173 - 3178
  • [34] A linear-quadratic optimal regulator for two-dimensional systems
    Jagannathan, M
    Syrmos, VL
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 4172 - 4177
  • [35] Rectifiability of Solutions for a Class of Two-Dimensional Linear Differential Systems
    Onitsuka, Masakazu
    Tanaka, Satoshi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [36] Exponential Dichotomy for Asymptotically Hyperbolic Two-Dimensional Linear Systems
    Weishi Liu
    Erik S. Van Vleck
    Journal of Dynamics and Differential Equations, 2010, 22 : 697 - 722
  • [37] FEEDBACK STABILIZATION OF MULTIVARIABLE TWO-DIMENSIONAL LINEAR-SYSTEMS
    LIN, ZP
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (03) : 1301 - 1317
  • [38] On the Finite-Time Stability of Two-Dimensional Linear Systems
    Amato, F.
    Cesarelli, M.
    Cosentino, C.
    Merola, A.
    Romano, M.
    PROCEEDINGS OF THE 2017 IEEE 14TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC 2017), 2017, : 317 - 321
  • [39] Exponential Dichotomy for Asymptotically Hyperbolic Two-Dimensional Linear Systems
    Liu, Weishi
    Van Vleck, Erik S.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (04) : 697 - 722
  • [40] Integrated state/disturbance observers for two-dimensional linear systems
    Zhao, Dong
    Lin, Zhiping
    Wang, Youqing
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (09): : 1373 - 1383