Two-dimensional extension of the reservoir technique for some linear advection systems

被引:4
|
作者
Alouges, Francois
Le Coq, Gerard
Lorin, Emmanuel [1 ]
机构
[1] Univ Orsay, Dept Math, F-91405 Orsay, France
[2] Ecole Normale Super, Ctr Math & Leurs Applicat, F-94235 Cachan, France
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, Canada
关键词
multidimensional convection; finite volume schemes; reservoirs; numerical diffusion;
D O I
10.1007/s10915-006-9115-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an extension of the reservoir technique (see, [Alouges et al., Submitted; Alouges et al.(2002a), In: Finite volumes for complex applications, III, pp. 247-254, Marseille; Alouges et al.(2002b), C. R. Math. Acad. Sci. Paris, 335(7), 627-632.]) for two-dimensional advection equations with non-constant velocities. The purpose of this work is to make decrease the numerical diffusion of finite volume schemes, correcting the numerical directions of propagation, using a so-called corrector vector combined with the reservoirs. We then introduce an object called velocities rose in order to minimize the algorithmic complexity of this method.
引用
收藏
页码:419 / 458
页数:40
相关论文
共 50 条
  • [1] Two-Dimensional Extension of the Reservoir Technique for Some Linear Advection Systems
    François Alouges
    Gérard Le Coq
    Emmanuel Lorin
    Journal of Scientific Computing, 2007, 31 : 419 - 458
  • [2] A Two-Dimensional Extension of Insertion Systems
    Fujioka, Kaoru
    THEORY AND PRACTICE OF NATURAL COMPUTING (TPNC 2014), 2014, 8890 : 181 - 192
  • [3] Lagrangian Transport and Chaotic Advection in Two-Dimensional Anisotropic Systems
    Stephen Varghese
    Michel Speetjens
    Ruben Trieling
    Transport in Porous Media, 2017, 119 : 225 - 246
  • [4] Lagrangian Transport and Chaotic Advection in Two-Dimensional Anisotropic Systems
    Varghese, Stephen
    Speetjens, Michel
    Trieling, Ruben
    TRANSPORT IN POROUS MEDIA, 2017, 119 (01) : 225 - 246
  • [5] THE ELECTRON RESERVOIR HYPOTHESIS FOR TWO-DIMENSIONAL ELECTRON SYSTEMS
    Yamada, K.
    Uchida, T.
    Fujita, M.
    Koizumi, H.
    Toyoda, T.
    QUANTUM BIO-INFORMATICS IV: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2011, 28 : 355 - 361
  • [6] LINEAR EXTENSION DIAMETER OF DOWNSET LATTICES OF TWO-DIMENSIONAL POSETS
    Felsner, Stefan
    Massow, Mareike
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (01) : 112 - 129
  • [7] A COMPARISON OF HIGH-RESOLUTION SCHEMES FOR THE TWO-DIMENSIONAL LINEAR ADVECTION EQUATION
    MILLER, HP
    COMPUTERS & FLUIDS, 1986, 14 (04) : 411 - 422
  • [8] New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems
    Marquette, Ian
    Quesne, Christiane
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (10)
  • [9] Control over some asymptotic invariants of two-dimensional linear control systems with an observer
    Kozlov, A. A.
    Burak, A. D.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2018, 28 (04): : 445 - 461
  • [10] Nonstationary two-dimensional quadratic systems equivalent to linear systems
    Veresovich, PP
    DIFFERENTIAL EQUATIONS, 1998, 34 (10) : 1421 - 1424