Bayesian modelling of ARFIMA processes by Markov chain Monte Carlo methods

被引:0
|
作者
Pai, JS [1 ]
Ravishanker, N [1 ]
机构
[1] UNIV CONNECTICUT,DEPT STAT,STORRS,CT 06269
关键词
ARFIMA models; exact likelihood; model selection; partial linear regression coefficients;
D O I
10.1002/(SICI)1099-131X(199603)15:2<63::AID-FOR606>3.0.CO;2-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article describes Bayesian inference for autoregressive fractionally integrated moving average (ARFIMA) models using Markov chain Monte Carlo methods. The posterior distribution of the model parameters, corresponding to the exact likelihood function is obtained through the partial linear regression coefficients of the ARFIMA process. A Metropolis-Rao-Blackwellizallization approach is used for implementing sampling-based Bayesian inference. Bayesian model selection is discussed and implemented.
引用
收藏
页码:63 / 82
页数:20
相关论文
共 50 条
  • [41] Reversible jump Markov chain Monte Carlo strategies for Bayesian model selection in autoregressive processes
    Vermaak, J
    Andrieu, C
    Doucet, A
    Godsill, SJ
    JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (06) : 785 - 809
  • [42] Markov chain Monte Carlo methods for speech enhancement
    Vermaak, J
    Niranjan, M
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1013 - 1016
  • [43] LOCAL DEGENERACY OF MARKOV CHAIN MONTE CARLO METHODS
    Kamatani, Kengo
    ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 713 - 725
  • [44] SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
    Brockwell, Anthony
    Del Moral, Pierre
    Doucet, Arnaud
    ANNALS OF STATISTICS, 2010, 38 (06): : 3387 - 3411
  • [45] Local consistency of Markov chain Monte Carlo methods
    Kamatani, Kengo
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (01) : 63 - 74
  • [46] Fluctuations of interacting Markov chain Monte Carlo methods
    Bercu, Bernard
    Del Moral, Pierre
    Doucet, Arnaud
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1304 - 1331
  • [47] Markov chain Monte Carlo methods: an introductory example
    Klauenberg, Katy
    Elster, Clemens
    METROLOGIA, 2016, 53 (01) : S32 - S39
  • [48] Local consistency of Markov chain Monte Carlo methods
    Kengo Kamatani
    Annals of the Institute of Statistical Mathematics, 2014, 66 : 63 - 74
  • [49] Monte Carlo Markov chain methods for genome screening
    Daw, EW
    Kumm, J
    Snow, GL
    Thompson, EA
    Wijsman, EM
    GENETIC EPIDEMIOLOGY, 1999, 17 : S133 - S138
  • [50] MARKOV CHAIN MONTE CARLO METHODS IN FINANCIAL ECONOMETRICS
    Verhofen, Michael
    FINANCIAL MARKETS AND PORTFOLIO MANAGEMENT, 2005, 19 (04) : 397 - 405