On the Kohn-Sham equations with periodic background potentials

被引:21
|
作者
Prodan, E [1 ]
Nordlander, P [1 ]
机构
[1] Rice Univ, Dept Phys, Houston, TX 77005 USA
关键词
density functional theory; Kohn-Sham equations; existence and uniqueness; thermodynamic limit; periodic potentials;
D O I
10.1023/A:1022810601639
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the question of existence and uniqueness for the finite temperature Kohn-Sham equations. For finite volumes, a unique soluion is shown to exists if the effective potential satisfies a set of general conditions and the coupling constant is smaller than a certain value. For periodic background potentials, this value is proven to be volume independent. In this case, the finite volume solutions are shown to converge as the thermodynamic limit is considered. The local density approximation is shown to satisfy the general conditions mentioned above.
引用
收藏
页码:967 / 992
页数:26
相关论文
共 50 条
  • [31] Calculating electronic energies from Kohn-Sham effective potentials
    Morrison, RC
    Parr, RG
    ELECTRONIC DENSITY FUNCTIONAL THEORY: RECENT PROGRESS AND NEW DIRECTIONS, 1998, : 125 - 131
  • [32] Reduction of Electronic Wave Functions to Kohn-Sham Effective Potentials
    Ryabinkin, Ilya G.
    Kohut, Sviataslau V.
    Staroverov, Viktor N.
    PHYSICAL REVIEW LETTERS, 2015, 115 (08)
  • [33] Simple method for constructing accurate atomic Kohn-Sham potentials
    Al-Sharif, AI
    Qteish, A
    Resta, R
    PHYSICAL REVIEW A, 1999, 60 (05): : 3541 - 3546
  • [34] Symmetry breaking in the self-consistent Kohn-Sham equations
    Prodan, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (25): : 5647 - 5657
  • [35] Alternative to the Kohn-Sham equations: The Pauli potential differential equation
    Levamaki, H.
    Nagy, A.
    Kokko, K.
    Vitos, L.
    PHYSICAL REVIEW A, 2015, 92 (06):
  • [36] A local Fock-exchange potential in Kohn-Sham equations
    Hollins, T. W.
    Clark, S. J.
    Refson, K.
    Gidopoulos, N. I.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (04)
  • [37] A THEORETICAL INVESTIGATION OF TIME-DEPENDENT KOHN-SHAM EQUATIONS
    Sprengel, M.
    Ciaramella, G.
    Borzi, A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (03) : 1681 - 1704
  • [38] KSSOLV-A MATLAB Toolbox for Solving the Kohn-Sham Equations
    Yang, Chao
    Meza, Juan C.
    Lee, Byounghak
    Wang, Lin-Wang
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2009, 36 (02):
  • [39] A singularity-based eigenfunction decomposition for Kohn-Sham equations
    Xin Zhang
    Aihui Zhou
    Science China Mathematics, 2016, 59 : 1623 - 1634
  • [40] A singularity-based eigenfunction decomposition for Kohn-Sham equations
    Zhang Xin
    Zhou Aihui
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (08) : 1623 - 1634