On the Kohn-Sham equations with periodic background potentials

被引:21
|
作者
Prodan, E [1 ]
Nordlander, P [1 ]
机构
[1] Rice Univ, Dept Phys, Houston, TX 77005 USA
关键词
density functional theory; Kohn-Sham equations; existence and uniqueness; thermodynamic limit; periodic potentials;
D O I
10.1023/A:1022810601639
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the question of existence and uniqueness for the finite temperature Kohn-Sham equations. For finite volumes, a unique soluion is shown to exists if the effective potential satisfies a set of general conditions and the coupling constant is smaller than a certain value. For periodic background potentials, this value is proven to be volume independent. In this case, the finite volume solutions are shown to converge as the thermodynamic limit is considered. The local density approximation is shown to satisfy the general conditions mentioned above.
引用
收藏
页码:967 / 992
页数:26
相关论文
共 50 条
  • [1] On the Kohn-Sham Equations with Periodic Background Potentials
    E. Prodan
    P. Nordlander
    Journal of Statistical Physics, 2003, 111 : 967 - 992
  • [2] Kohn-Sham equations for multiplets
    Nagy, A
    PHYSICAL REVIEW A, 1998, 57 (03): : 1672 - 1677
  • [3] Kohn-Sham potentials by an inverse Kohn-Sham equation and accuracy assessment by virial theorem
    Kato, Tsuyoshi
    Saito, Shinji
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2023, 70 (03) : 554 - 569
  • [4] EXACT AND APPROXIMATE KOHN-SHAM POTENTIALS
    GRITSENKO, OV
    VANLEEUWEN, R
    BAERENDS, EJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 61 - PHYS
  • [5] Kohn-Sham potentials for atomic multiplets
    Nagy, A
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1999, 32 (12) : 2841 - 2851
  • [6] Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations
    Kananenka, Alexei A.
    Kohut, Sviataslau V.
    Gaiduk, Alex P.
    Ryabinkin, Ilya G.
    Staroverov, Viktor N.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (07):
  • [7] Guaranteed Convergence of the Kohn-Sham Equations
    Wagner, Lucas O.
    Stoudenmire, E. M.
    Burke, Kieron
    White, Steven R.
    PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [8] Construction of integrable model Kohn-Sham potentials
    Staroverov, Viktor N.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [9] Kohn-Sham potentials for fullerenes and spherical molecules
    Pavlyukh, Y.
    Berakdar, J.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [10] Bypassing the Kohn-Sham equations with machine learning
    Brockherde, Felix
    Vogt, Leslie
    Li, Li
    Tuckerman, Mark E.
    Burke, Kieron
    Mueller, Klaus-Robert
    NATURE COMMUNICATIONS, 2017, 8