SHARP WEIGHTED ESTIMATES FOR APPROXIMATING DYADIC OPERATORS

被引:27
|
作者
Cruz-Uribe, David [1 ]
Maria Martell, Jose
Perez, Carlos
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
基金
美国国家科学基金会;
关键词
A(p) weights; Haar shift operators singular integral operators; Hilbert transform; Riesz transforms; Beurling-Ahlfors operator; dyadic square function; vector-valued maximal operator; HILBERT TRANSFORM; INEQUALITIES; SPACES;
D O I
10.3934/era.2010.17.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the sharp weighted L-p inequality parallel to T parallel to(Lp(w)) <= C-n,C-T [w](Ap)(max(1,1/p-1)), where T is the Hilbert transform, a Riesz transform, the Beurling-Ahlfors operator or any operator that can be approximated by Haar shift operators. Our proof avoids the Bellman function technique and two weight norm inequalities. We use instead a recent result due to A. Lerner [15] to estimate the oscillation of dyadic operators. The method we use is flexible enough to obtain the sharp one-weight result for other important operators as well as a very sharp two-weight bump type result for T as can be found in [5].
引用
收藏
页码:12 / 19
页数:8
相关论文
共 50 条
  • [41] Sharp Lorentz space estimates for rough operators
    Andreas Seeger
    Terence Tao
    Mathematische Annalen, 2001, 320 : 381 - 415
  • [42] Sharp Estimates for Singular Values of Hankel Operators
    Pushnitski, Alexander
    Yafaev, Dmitri
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) : 393 - 411
  • [43] Sharp estimates for Hardy operators on Heisenberg group
    Qingyan Wu
    Zunwei Fu
    Frontiers of Mathematics in China, 2016, 11 : 155 - 172
  • [44] Sharp Lorentz space estimates for rough operators
    Seeger, A
    Tao, T
    MATHEMATISCHE ANNALEN, 2001, 320 (02) : 381 - 415
  • [45] Sharp norm estimates for a class of integral operators
    Luor, Dah-Chin
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (12): : 2504 - 2519
  • [46] Sharp convolution and multiplication estimates in weighted spaces
    Toft, Joachim
    Johansson, Karoline
    Pilipovic, Stevan
    Teofanov, Nenad
    ANALYSIS AND APPLICATIONS, 2015, 13 (05) : 457 - 480
  • [47] Sharp estimates for Hardy operators on Heisenberg group
    Wu, Qingyan
    Fu, Zunwei
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (01) : 155 - 172
  • [48] Sharp weighted bounds for multiple integral operators
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Zaighum, Muhammad Asad
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2016, 170 (01) : 75 - 90
  • [49] On the Sharp Estimates for Convolution Operators with Oscillatory Kernel
    Ikromov, Isroil A.
    Ikromova, Dildora I.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (03)
  • [50] Sharp weighted bounds for fractional integral operators
    Lacey, Michael T.
    Moen, Kabe
    Perez, Carlos
    Torres, Rodolfo H.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (05) : 1073 - 1097