SHARP WEIGHTED ESTIMATES FOR APPROXIMATING DYADIC OPERATORS

被引:27
|
作者
Cruz-Uribe, David [1 ]
Maria Martell, Jose
Perez, Carlos
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
基金
美国国家科学基金会;
关键词
A(p) weights; Haar shift operators singular integral operators; Hilbert transform; Riesz transforms; Beurling-Ahlfors operator; dyadic square function; vector-valued maximal operator; HILBERT TRANSFORM; INEQUALITIES; SPACES;
D O I
10.3934/era.2010.17.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the sharp weighted L-p inequality parallel to T parallel to(Lp(w)) <= C-n,C-T [w](Ap)(max(1,1/p-1)), where T is the Hilbert transform, a Riesz transform, the Beurling-Ahlfors operator or any operator that can be approximated by Haar shift operators. Our proof avoids the Bellman function technique and two weight norm inequalities. We use instead a recent result due to A. Lerner [15] to estimate the oscillation of dyadic operators. The method we use is flexible enough to obtain the sharp one-weight result for other important operators as well as a very sharp two-weight bump type result for T as can be found in [5].
引用
收藏
页码:12 / 19
页数:8
相关论文
共 50 条
  • [1] Sharp weighted estimates for classical operators
    Cruz-Uribe, David
    Maria Martell, Jose
    Perez, Carlos
    ADVANCES IN MATHEMATICS, 2012, 229 (01) : 408 - 441
  • [2] Some Sharp Weighted Estimates for Multilinear Operators
    Liu Lanzhe
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2005, 23 (1-2): : 99 - 114
  • [3] Sharp weighted estimates for dyadic shifts and the A2 conjecture
    Hytonen, Tuomas
    Perez, Carlos
    Treil, Sergei
    Volberg, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 : 43 - 86
  • [4] Sharp estimates for dyadic-type maximal operators and stability
    Melas, Antonios
    FIRST CONGRESS OF GREEK MATHEMATICIANS, 2020, : 167 - 180
  • [5] Sharp Weighted Estimates for Strong-Sparse Operators
    Mnatsakanyan, G.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (04): : 222 - 231
  • [6] Sharp Weighted Estimates for Strong-Sparse Operators
    G. Mnatsakanyan
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2022, 57 : 222 - 231
  • [7] Sharp Lp,∞ → Lq Estimates for the Dyadic-Like Maximal Operators
    Osekowski, Adam
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (05) : 911 - 933
  • [8] WEIGHTED PLANCHEREL ESTIMATES AND SHARP SPECTRAL MULTIPLIERS FOR THE GRUSHIN OPERATORS
    Martini, Alessio
    Sikora, Adam
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (05) : 1075 - 1088
  • [9] Sharp Lorentz-norm estimates for dyadic-like maximal operators
    Osekowski, Adam
    Rapicki, Mateusz
    STUDIA MATHEMATICA, 2021, 257 (01) : 87 - 110
  • [10] SHARP WEAK-TYPE ESTIMATES FOR THE DYADIC-LIKE MAXIMAL OPERATORS
    Osekowski, Adam
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (04): : 1031 - 1050