Regeneration strategies for metal-organic frameworks post acidic gas capture

被引:12
|
作者
Gupta, Nishesh Kumar [1 ,2 ]
Vikrant, Kumar [3 ]
Kim, Kwang Soo [1 ,2 ]
Kim, Ki-Hyun [3 ]
Giannakoudakis, Dimitrios A. [4 ]
机构
[1] Univ Sci & Technol UST, Daejeon, South Korea
[2] Korea Inst Civil Engn & Bldg Technol KICT, Dept Land Water & Environm Res, Goyang, South Korea
[3] Hanyang Univ, Dept Civil & Environm Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[4] Aristotle Univ Thessaloniki, Sch Chem, Div Chem Technol, Thessaloniki 54124, Greece
基金
新加坡国家研究基金会;
关键词
Adsorption; Hydrogen sulfide; Metal-organic frameworks; Regeneration; Sulfur dioxide; Nitrogen dioxide; HYDROGEN-SULFIDE; NITROGEN-DIOXIDE; SO2; ADSORPTION; SULFUR-DIOXIDE; CARBON-DIOXIDE; NO2; REMOVAL; MOFS; H2S; CO2; DESULFURIZATION;
D O I
10.1016/j.ccr.2022.214629
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) are highly porous inorganic-organic hybrid materials with exceptional uptake capacity for various targets such as deleterious acidic gases (e.g., hydrogen sulfide (H2S), sulfur dioxide (SO2), and nitrogen dioxide (NO2)). Despite the significance of such purification processes, relatively little is known about the strategies required for the regeneration of MOFs post acidic gas capture. To help gain a better knowledge on the regenerability of MOFs with high gas uptake, a comprehensive review is offered to describe various types of MOF regeneration methods applied after capturing of H2S, SO2, and NO2. Pressure-and temperature-swing methods can be used to reactivate MOFs upon physical adsorption of gases. Although there are more difficulties in regenerating MOFs with chemisorbed sulfurous gases, some reactivation strategies (e.g., solvent and ultraviolet irradiation-based treatments) can be recommended to facilitate their regeneration. Overall, the regenerability of MOF is highlighted to help expand their utility in air quality remediation. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Metal-organic frameworks designed for carbon dioxide capture from flue gas
    Hupp, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [22] Sulfur Dioxide Capture in Metal-Organic Frameworks, Metal-Organic Cages, and Porous Organic Cages
    Gupta, Nishesh Kumar
    Lopez-Olvera, Alfredo
    Gonzalez-Zamora, Eduardo
    Martinez-Ahumada, Eva
    Ibarra, Ilich A.
    CHEMPLUSCHEM, 2022, 87 (06):
  • [23] Synthetic strategies for chiral metal-organic frameworks
    Zongsu Han
    Wei Shi
    Peng Cheng
    Chinese Chemical Letters, 2018, 29 (06) : 819 - 822
  • [24] The synthesis of metal-organic frameworks with template strategies
    Zhao, Nian
    Cai, Kun
    He, Hongming
    DALTON TRANSACTIONS, 2020, 49 (33) : 11467 - 11479
  • [25] Strategies for hydrogen storage in metal-organic frameworks
    Rowsell, JLC
    Yaghi, OM
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (30) : 4670 - 4679
  • [26] Synthetic strategies for chiral metal-organic frameworks
    Han, Zongsu
    Shi, Wei
    Cheng, Peng
    CHINESE CHEMICAL LETTERS, 2018, 29 (06) : 819 - 822
  • [27] Recent Advances in Carbon Capture with Metal-Organic Frameworks
    Stylianou, Kyriakos C.
    Queen, Wendy L.
    CHIMIA, 2015, 69 (05) : 274 - 283
  • [28] Post-synthetically modified metal-organic frameworks for sensing and capture of water pollutants
    Mukherjee, Soumya
    Dutta, Subhajit
    More, Yogeshwar D.
    Fajal, Sahel
    Ghosh, Sujit K.
    DALTON TRANSACTIONS, 2021, 50 (48) : 17832 - +
  • [29] Trace Carbon Dioxide Capture by Metal-Organic Frameworks
    Liu, Jia
    Wei, Yajuan
    Zhao, Yanli
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01): : 82 - 93
  • [30] Efficient carbon capture in metal-organic frameworks (MOFs)
    Yildirim, Taner
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243