DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders

被引:15
|
作者
Provasek, Vincent E. [1 ,2 ]
Mitra, Joy [1 ]
Malojirao, Vikas H. [1 ]
Hegde, Muralidhar L. [1 ,2 ,3 ]
机构
[1] Houston Methodist Res Inst, Ctr Neuroregenerat, Dept Neurosurg, Houston, TX 77030 USA
[2] Texas A&M Univ, Coll Med, College Stn, TX 77843 USA
[3] Weill Cornell Med Coll, Dept Neurosci, New York, NY 11021 USA
关键词
TDP-43; hnRNPs; DNA double-strand break repair; DNA damage response; neurodegeneration; dementia; AMYOTROPHIC-LATERAL-SCLEROSIS; FRONTOTEMPORAL LOBAR DEGENERATION; NUCLEAR RIBONUCLEOPROTEIN B1; STRESS GRANULE DYNAMICS; CELL-CYCLE ACTIVATION; END-JOINING ACTIVITY; NEURAL STEM-CELLS; DAMAGE RESPONSE; HOMOLOGOUS RECOMBINATION; MESSENGER-RNA;
D O I
10.3390/ijms23094653
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] INDUCTION AND REPAIR OF DNA DOUBLE-STRAND BREAKS
    NEVALDINE, B
    LONGO, JA
    KING, GA
    VILENCHIK, M
    SAGERMAN, RH
    HAHN, PJ
    RADIATION RESEARCH, 1993, 133 (03) : 370 - 374
  • [22] Processing of DNA Double-Strand Breaks in Yeast
    Gnugge, Robert
    Oh, Julyun
    Symington, Lorraine S.
    MECHANISMS OF DNA RECOMBINATION AND GENOME REARRANGEMENTS: METHODS TO STUDY HOMOLOGOUS RECOMBINATION, 2018, 600 : 1 - 24
  • [23] MATCHING OF SINGLE-STRAND BREAKS TO FORM DOUBLE-STRAND BREAKS IN DNA
    FREIFELDER, D
    TRUMBO, B
    BIOPOLYMERS, 1969, 7 (05) : 681 - +
  • [24] Chromosomal aberrations induced by defined DNA double-strand breaks: The origin of achromatic lesions
    Harvey, AN
    Costa, ND
    Savage, JRK
    Thacker, J
    SOMATIC CELL AND MOLECULAR GENETICS, 1997, 23 (03) : 211 - 219
  • [25] Regulatory ubiquitylation in response to DNA double-strand breaks
    Panier, Stephanie
    Durocher, Daniel
    DNA REPAIR, 2009, 8 (04) : 436 - 443
  • [26] Formation, repair and detection of DNA double-strand breaks
    Brozmanová, J
    Marková, E
    Dudás, A
    BIOLOGIA, 2002, 57 (06) : 665 - 675
  • [27] ON THE MEASUREMENT OF DNA DOUBLE-STRAND BREAKS BY NEUTRAL ELUTION
    PEAK, JG
    BLAZEK, ER
    PEAK, MJ
    RADIATION RESEARCH, 1990, 122 (01) : 104 - 105
  • [28] PHOTOCHEMICAL PRODUCTION OF DOUBLE-STRAND BREAKS IN CELLULAR DNA
    LIMOLI, CL
    WARD, JF
    MUTAGENESIS, 1995, 10 (05) : 453 - 456
  • [29] ON THE MEASUREMENT OF DNA DOUBLE-STRAND BREAKS BY NEUTRAL ELUTION
    HUTCHINSON, F
    RADIATION RESEARCH, 1989, 120 (01) : 182 - 186
  • [30] DETERMINATION OF DOUBLE-STRAND DNA BREAKS IN THE EUKARYOTIC CELLS
    MEDVEDEV, AI
    SHLEKTAREV, VA
    REVINA, GI
    TSITOLOGIYA, 1991, 33 (01): : 97 - 99