Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images

被引:99
|
作者
Zheng, Juepeng [1 ]
Fu, Haohuan [1 ,2 ]
Li, Weijia [1 ,3 ]
Wu, Wenzhao [1 ,2 ]
Yu, Le [1 ]
Yuan, Shuai [4 ]
Tao, Wai Yuk William [5 ]
Pang, Tan Kian [6 ]
Kanniah, Kasturi Devi [7 ]
机构
[1] Tsinghua Univ, Dept Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China
[2] Natl Supercomp Ctr Wuxi, Wuxi 214000, Jiangsu, Peoples R China
[3] Chinese Univ Hong Kong, CUHK SenseTime Joint Lab, Hong Kong, Peoples R China
[4] Tsinghua Univ, Dept Eletron Engn, Beijing 100084, Peoples R China
[5] Insight Robot, Hong Kong, Peoples R China
[6] Refinit Agr Res, 18 Sci Pk Dr, Singapore 118229, Singapore
[7] Univ Teknol Malaysia, Fac Built Environm & Surveying, Johor Baharu, Malaysia
基金
中国国家自然科学基金;
关键词
Individual tree detection; Growing status; Oil palm; UAV images; Deep learning; CONVOLUTIONAL NEURAL-NETWORKS; PHOTOGRAMMETRIC POINT CLOUDS; REMOTE-SENSING IMAGES; UK-DMC; CROWN DETECTION; INDIVIDUAL TREES; LIDAR DATA; SPECIES CLASSIFICATION; VEGETATION INDEXES; DOMAIN ADAPTATION;
D O I
10.1016/j.isprsjprs.2021.01.008
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
For both the positive economic benefit and the negative ecological impact of the rapid expansion of oil palm plantations in tropical developing countries, it is significant to achieve accurate detection for oil palm trees in large-scale areas. Especially, growing status observation and smart oil palm plantation management enabled by such accurate detections would improve plantation planning, oil palm yield, and reduce manpower and consumption of fertilizer. Although existing studies have already reached a high accuracy in oil palm tree detection, rare attention has been paid to automated observation of each single oil palm tree's growing status. Nowadays, with its high spatial resolution and low cost, Unmanned Aerial Vehicle (UAV) has become a promising tool for monitoring the growing status of individual oil palms. However, the accuracy is still a challenging issue because of the extreme imbalance and high similarity between different classes. In this paper, we propose a Multi-class Oil PAlm Detection approach (MOPAD) to reap both accurate detection of oil palm trees and accurate monitoring of their growing status. Based on Faster RCNN, MOPAD combines a Refined Pyramid Feature (RPF) module and a hybrid class-balanced loss module to achieve satisfying observation of the growing status for individual oil palms. The former takes advantage of multi-level features to distinguish similar classes and detect small oil palms, and the latter effectively resolves the problem of extremely imbalanced samples. Moreover, we elaborately analyze the distribution of different kinds of oil palms, and propose a practical workflow for detecting oil palm vacancy. We evaluate MOPAD using three large-scale UAV images photographed in two sites in Indonesia (denoted by Site 1 and Site 2), containing 363,877 oil palms of five categories: healthy palms, dead palms, mismanaged palms, smallish palms and yellowish palms. Our proposed MOPAD achieves an F1-score of 87.91% (Site 1) and 99.04% (Site 2) for overall oil palm tree detection, and outperforms other state-of-the-art object detection methods by a remarkable margin of 10.37-17.09% and 8.14%-21.32% with respect to the average F1score for multi-class oil palm detection in Site 1 and Site 2, respectively. Our method demonstrates excellent potential for individual oil palm tree detection and observation of growing status from UAV images, leading to more precise and efficient management of oil palm plantations.
引用
收藏
页码:95 / 121
页数:27
相关论文
共 50 条
  • [31] Detection of diseased pine trees in unmanned aerial vehicle images by using deep convolutional neural networks
    Hu, Gensheng
    Zhu, Yanqiu
    Wan, Mingzhu
    Bao, Wenxia
    Zhang, Yan
    Liang, Dong
    Yin, Cunjun
    GEOCARTO INTERNATIONAL, 2022, 37 (12) : 3520 - 3539
  • [32] ANALYSIS OF MULTISPECTRAL IMAGERY FROM UNMANNED AERIAL VEHICLE (UAV) USING OBJECT-BASED IMAGE ANALYSIS FOR DETECTION OF Ganoderma DISEASE IN OIL PALM
    Izzuddin, M. A.
    Hamzah, A.
    Nisfariza, M. N.
    Idris, A. S.
    JOURNAL OF OIL PALM RESEARCH, 2020, 32 (03): : 497 - 508
  • [33] Steep Slope DEM Model Construction based on the Unmanned Aerial Vehicle (UAV) Images
    Xi, Wenfei
    Li, Dongsheng
    SAINS MALAYSIANA, 2017, 46 (11): : 2119 - 2124
  • [34] Verification of Accuracy of Unmanned Aerial Vehicle (UAV) Land Surface Temperature Images Using In-Situ Data
    Song, Bonggeun
    Park, Kyunghun
    REMOTE SENSING, 2020, 12 (02)
  • [35] Weed mapping in early-season sunflower fields using images from an unmanned aerial vehicle (UAV)
    Pena, J. M.
    Torres-Sanchez, J.
    Serrano-Perez, A.
    Lopez-Granados, F.
    REVISTA DE TELEDETECCION, 2014, (42): : 39 - 47
  • [36] Mapping skips in sugarcane fields using object-based analysis of unmanned aerial vehicle (UAV) images
    Wachholz de Souza, Carlos Henrique
    Camargo Lamparelli, Rubens Augusto
    Rocha, Jansle Vieira
    Graziano Magalhaes, Paulo Sergio
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 143 : 49 - 56
  • [37] Burned Olive Trees Identification with a Deep Learning Approach in Unmanned Aerial Vehicle Images
    Vasilakos, Christos
    Verykios, Vassilios S.
    REMOTE SENSING, 2024, 16 (23)
  • [38] Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform
    Xiang, Haitao
    Tian, Lei
    BIOSYSTEMS ENGINEERING, 2011, 108 (02) : 104 - 113
  • [39] Fast and Robust Photomapping with an Unmanned Aerial Vehicle (UAV)
    Buelow, Heiko
    Birk, Andreas
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 3368 - 3373
  • [40] Wind tunnel test of an unmanned aerial vehicle (UAV)
    Chung Jindeog
    Lee Jangyeon
    Sung Bongzoo
    Koo Samok
    KSME International Journal, 2003, 17 : 776 - 783