Interconnection of Port-Hamiltonian Systems Via Contact Structures. An Application to Macro-economic Systems

被引:0
|
作者
Macchelli, Alessandro [1 ]
机构
[1] Univ Bologna, Dept Elect Elect & Informat Engn DEI Guglielmo Ma, Viale Risorgimento 2, I-40136 Bologna, Italy
关键词
GEOMETRY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims at extending a novel approach based on the port-Hamiltonian formalism and able to model macro-economic systems to include a more realistic formulation of the firm (or supplier) behaviour. The firm is a profit maximising entity, naturally described in terms of a contact structure, that interconnects the markets associated to the demand and to the input factors in order to create a profit. To determine the resulting dynamics, the paper shows how to interconnect the port-Hamiltonian systems associated to each market with contact structures, i.e. how to combine power conserving interconnecting structures, namely Dirac structures (related to the Walras's Law of macro-economic), with contact structures, usually employed to describe irreversible phenomena. Beside the specific application to macro-economy, since a contact structure can be associated to a sort of "energy-based" maximisation/minimisation problem, it is also shown how to achieve such kind of interconnection via feedback control, i. e. how to shape a power-conserving interconnection to obtain a contact structure.
引用
收藏
页码:6395 / 6400
页数:6
相关论文
共 50 条
  • [31] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [32] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [33] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [34] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [35] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [36] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [37] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [38] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [39] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [40] Interconnection of irreversible port Hamiltonian systems☆
    Ramirez, Hector
    Le Gorrec, Yann
    AUTOMATICA, 2024, 170