Rotation invariant texture classification based on a directional filter bank

被引:1
|
作者
Duan, R [1 ]
Man, H [1 ]
Chen, L [1 ]
机构
[1] Stevens Inst Technol, Dept ECE, Hoboken, NJ 07030 USA
关键词
D O I
10.1109/ICME.2004.1394461
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a rotation invariant texture classification method using a special directional filter bank (DFB). The new method extracts a set of coefficient vectors from directional subband domain, and models them with multivariate Gaussian density. Eigen-analysis is then applied to the covariance metrics of these density functions to form rotation invariant feature vectors. Classification is based on the distance between known and unknown feature vectors. Two distance measures are studied in this work, including the Kullback-Leibler distance and the Euclidean distance. Experimental results have shown that this DFB is very effective in capturing directional information of texture images, and the proposed rotation invariant feature generation and classification method can in fact achieve high classification accuracy on both non-rotated and rotated images.
引用
收藏
页码:1291 / 1294
页数:4
相关论文
共 50 条
  • [41] Rotation Invariant Local Frequency Descriptors for Texture Classification
    Maani, Rouzbeh
    Kalra, Sanjay
    Yang, Yee-Hong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (06) : 2409 - 2419
  • [42] Learning rotation invariant convolutional filters for texture classification
    Marcos, Diego
    Volpi, Michele
    Tuia, Devis
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2012 - 2017
  • [43] Rotation invariant texture classification using multichannel filtering
    Manthalkar, R
    Biswas, PK
    OBJECT DETECTION, CLASSIFICATION, AND TRACKING TECHNOLOGIES, 2001, 4554 : 107 - +
  • [44] Noise robust rotation invariant features for texture classification
    Maani, Rouzbeh
    Kalra, Sanjay
    Yang, Yee-Hong
    PATTERN RECOGNITION, 2013, 46 (08) : 2103 - 2116
  • [45] Empirical Mode Decomposition for Rotation Invariant Texture Classification
    Xiong Changzhen
    Guo Fenhong
    2009 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 551 - 554
  • [46] Rotation invariant texture classification of remote sense image
    Lin, Z
    Du, HY
    Liu, YC
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 23 (03) : 189 - 192
  • [47] Rotation invariant texture classification using Bamberger pyramids
    Rosiles, JG
    Smith, MJT
    Mersereau, RM
    2005 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), VOLS 1 AND 2, 2005, : 1011 - 1014
  • [48] Rotation invariant texture classification of remote sense image
    Zhang, Lin
    Du, Hong-Ya
    Liu, Yun-Cai
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2004, 23 (03): : 189 - 192
  • [49] Rotation-invariant features for texture image classification
    Jalil, A.
    Qureshi, I. M.
    Manzar, A.
    Zahoor, R. A.
    2006 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF INTELLIGENT SYSTEMS, 2006, : 42 - +
  • [50] Rotation invariant texture classification using Gabor wavelets
    Yin, Qingbo
    Kim, Jong Nam
    Moon, Kwang-Seok
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 10 - +