An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling

被引:87
|
作者
Lu, Songfeng [1 ]
Sun, Chengfu [1 ]
Lu, Zhengding [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
关键词
Hydrothermal power systems; Priority list; Combined economic emission scheduling; Quantum-behaved particle swarm optimization; Differential mutation operator; DIFFERENTIAL EVOLUTION; GENETIC ALGORITHM; DISPATCH; COORDINATION; SEARCH;
D O I
10.1016/j.enconman.2009.10.024
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a modified quantum-behaved particle swarm optimization (QPSO) for short-term combined economic emission scheduling (CEES) of hydrothermal power systems with several equality and inequality constraints. The hydrothermal scheduling is formulated as a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing pollutant emission. The bi-objective problem is converted into a single objective one by price penalty factor. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability. In this study, heuristic strategies are proposed to handle the equality constraints especially water dynamic balance constraints and active power balance constraints. A feasibility-based selection technique is also employed to meet the reservoir storage volumes constraints. To show the efficiency of the proposed method, different case studies are carried out and QPSO-DM is compared with the differential evolution (DE), the particle swarm optimization (PSO) with same heuristic strategies in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed method is capable of yielding higher-quality solutions stably and efficiently in the short-term hydrothermal scheduling than any other tested optimization algorithms. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:561 / 571
页数:11
相关论文
共 50 条
  • [31] A cooperative approach to quantum-behaved particle swarm optimization
    Gao, Hao
    Xu, Wenbo
    Gao, Tao
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, CONFERENCE PROCEEDINGS BOOK, 2007, : 205 - +
  • [32] A Novel Quantum-behaved Particle Swarm Optimization Algorithm
    Zhao, Jing
    Liu, Hong
    14TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS, ENGINEERING AND SCIENCE (DCABES 2015), 2015, : 94 - 97
  • [33] Quantum-behaved particle swarm optimization for integer programming
    Liu, Jing
    Sun, Jun
    Xu, Wenbo
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 1042 - 1050
  • [34] Application of quantum-behaved particle swarm optimization algorithm
    Wang Shanli
    Long Jun
    Wei Zhiyi
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1016 - 1021
  • [35] A Novel Quantum-Behaved Particle Swarm Optimization Algorithm
    Wu, Tao
    Xie, Lei
    Chen, Xi
    Ashrafzadeh, Amir Homayoon
    Zhang, Shu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (02): : 873 - 890
  • [36] A cooperative approach to quantum-behaved particle swarm optimization
    Kang, Yan
    Xu, Wenbo
    Sun, Jun
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 332 - 337
  • [37] Quantum-behaved Particle Swarm Optimization with binary encoding
    Sun, Jun
    Xu, Wenbo
    Fang, Wei
    Chai, Zhilei
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 376 - +
  • [38] Quantum-behaved particle swarm optimization with immune operator
    Liu, Jing
    Sun, Jun
    Xu, Wenbo
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2006, 4203 : 77 - 83
  • [39] An improved quantum-behaved particle swarm optimization for multi-peak optimization problems
    Zhao, Ji
    Sun, Jun
    Lai, Choi-Hong
    Xu, Wenbo
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (03) : 517 - 532
  • [40] Fuzzy Kernel Clustering Method Based on Improved Quantum-Behaved Particle Swarm Optimization Algorithm
    Mai Xiongfa
    Yuan Jingjing
    Duan Lian
    Li Ling
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2018, : 15 - 19