Investigation on In Situ Carbon-Coated ZnFe2O4 as Advanced Anode Material for Li-Ion Batteries

被引:2
|
作者
Alam, Mir Waqas [1 ]
BaQais, Amal [2 ]
Rahman, Mohammed M. [3 ,4 ]
Aamir, Muhammad [5 ]
Abuzir, Alaaedeen [1 ]
Mushtaq, Shehla [6 ]
Amin, Muhammad Nasir [7 ]
Khan, Muhammad Shuaib [8 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Phys, Al Hasa 31982, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Chem, Riyadh 11671, Saudi Arabia
[3] King Abdulaziz Univ, Dept Chem, Jeddah 21589, Saudi Arabia
[4] King Abdulaziz Univ, CEAMR, Jeddah 21589, Saudi Arabia
[5] King Faisal Univ, Dept Basic Sci, Al Hasa 31982, Saudi Arabia
[6] Natl Univ Sci & Technol, Sch Nat Sci, Islamabad 44000, Pakistan
[7] King Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
[8] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy IRCRE, State Key Lab Multiphase Flow Power Engn MPFE, 28 West Xianning Rd, Xian 710049, Peoples R China
关键词
zinc ferrate; carbon-coated; sol-gel; anode material; Li-ion storage; HIGH-PERFORMANCE; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; HYDROTHERMAL SYNTHESIS; FACILE SYNTHESIS; SUPERIOR ANODE; LITHIUM; NANOPARTICLES; COMPOSITES; GRAPHENE;
D O I
10.3390/gels8050305
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
ZnFe2O4 as an anode that is believed to attractive. Due to its large theoretical capacity, this electrode is ideal for Lithium-ion batteries. However, the performance of ZnFe2O4 while charging and discharging is limited by its volume growth. In the present study, carbon-coated ZnFe2O4 is synthesized by the sol-gel method. Carbon is coated on the spherical surface of ZnFe2O4 by in situ coating. In situ carbon coating alleviates volume expansion during electrochemical performance and Lithium-ion mobility is accelerated, and electron transit is accelerated; thus, carbon-coated ZnFe2O4 show good electrochemical performance. After 50 cycles at a current density of 0.1 A center dot g(-1), the battery had a discharge capacity of 1312 mAh center dot g(-1) and a capacity of roughly 1220 mAh center dot g(-1). The performance of carbon-coated ZnFe2O4 as an improved anode is electrochemically used for Li-ion energy storage applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] In-situ carbon coated CuCo2S4 anode material for Li-ion battery applications
    Verma, Rakesh
    Kothandaraman, R.
    Varadaraju, U. V.
    APPLIED SURFACE SCIENCE, 2017, 418 : 30 - 39
  • [32] Biomimetic Synthesis of Polydopamine Coated ZnFe2O4 Composites as Anode Materials for Lithium-Ion Batteries
    Yue, Hongyun
    Du, Ting
    Wang, Okiuxian
    Shi, Zhenpu
    Dong, Hongyu
    Cao, Zhaoxia
    Qiao, Yun
    Yin, Yanhong
    Xing, Ruimin
    Yang, Shuting
    ACS OMEGA, 2018, 3 (03): : 2699 - 2705
  • [33] Mesoporous Sn/Mg doped ZnFe2O4 nanorods as anode with enhanced Li-ion storage properties
    Chen, Kai-Ting
    Chen, Han-Yi
    Tsai, Cho-Jen
    ELECTROCHIMICA ACTA, 2019, 319 : 577 - 586
  • [34] Electrochemical Activation of Carbon-Coated SiO2 Anode Materials for High-Performance Li-Ion Batteries
    Dong, Xue
    Woo, Chaeheon
    Oh, Seungbae
    Kim, Yeongjin
    Zhang, Xiaojie
    Choi, Kyung Hwan
    Kang, Jinsu
    Bang, Hyeon-Seok
    Jeon, Jiho
    Oh, Hyung-Suk
    Kim, Dongju
    Yu, Hak Ki
    Mun, Junyoung
    Choi, Jae-Young
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (17): : 7478 - 7484
  • [35] Probing Lithiation Kinetics of Carbon-Coated ZnFe2O4 Nanoparticle Battery Anodes
    Martinez-Julian, Fernando
    Guerrero, Antonio
    Haro, Marta
    Bisquert, Juan
    Bresser, Dominic
    Paillard, Elie
    Passerini, Stefano
    Garcia-Belmonte, Germa
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (12): : 6069 - 6076
  • [36] CNTs boosting superior cycling stability of ZnFe2O4/C nanoparticles as high-capacity anode materials of Li-ion batteries
    Zhang, Yuxia
    Chen, Shaokang
    Meng, Yu
    Chang, Liyao
    Huang, Xiyun
    Zheng, Yingdi
    Shen, Jiangang
    Zhao, Taolin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 912
  • [37] ZnFe2O4, a Green and High-Capacity Anode Material for Lithium-Ion Batteries: A Review
    Bini, Marcella
    Ambrosetti, Marco
    Spada, Daniele
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [38] Electrochemical lithium storage of a ZnFe2O4/graphene nanocomposite as an anode material for rechargeable lithium ion batteries
    Rai, Alok Kumar
    Kim, Sungjin
    Gim, Jihyeon
    Alfaruqi, Muhammad Hilmy
    Mathew, Vinod
    Kim, Jaekook
    RSC ADVANCES, 2014, 4 (87): : 47087 - 47095
  • [39] Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries
    Yao, Yu
    Zhang, Jingjing
    Xue, Leigang
    Huang, Tao
    Yu, Aishui
    JOURNAL OF POWER SOURCES, 2011, 196 (23) : 10240 - 10243
  • [40] Porous ZnFe2O4 Nanospheres Grown on Graphene Nanosheets as a Superior Anode Material for Lithium Ion Batteries
    Chen, Xianglan
    Cheng, Bin
    Xu, Huayun
    Yang, Jian
    Qian, Yitai
    CHEMISTRY LETTERS, 2012, 41 (06) : 639 - 641