A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries

被引:30
|
作者
Yu, Lubing [1 ]
Liu, Jian [1 ,2 ,3 ]
He, Shuaishuai [1 ]
Huang, Cliaofan [1 ]
Gan, Lihui [1 ,2 ,3 ]
Gong, Zhengliang [1 ]
Long, Minnan [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Xicunen Key Lab Clean & High Valued Applicat Biom, Xiamen 361102, Fujian, Peoples R China
[3] Xiamen Univ, Fujian Engn & Res Ctr Clean & High Valued Technol, Xiamen 361102, Fujian, Peoples R China
关键词
3D polymer binder; Carboxymethylcellulose; Lithium-ion batteries; Silicon anode; WATER-SOLUBLE BINDER; CARBON SHELL; COMPOSITE; ALGINATE; POLYACRYLAMIDE; CAPABILITY; CELLULOSE;
D O I
10.1016/j.jpcs.2019.109113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For high-capacity silicon (Si) anodes, the design of new binder is a feasible way to overcome the rapid capacity decay attributed to the large volume change of silicon (Si) anode in the repeated charging/discharging process. Hire a newly designed binder with 3D structure was developed using CMC as the backbone, and acrylamide (AM), acrylic acid (AA) as the branch. The molecular structure was characterized by Fourier transform infrared (FTIR), and ethanol washing was applied for getting rid of unreacted monomers. The multifunctional binder with 3D structure and rich polar groups was prepared by cross-linking grafting. Polyacrylamide provides a strong adhesion and contributes to the formation of the solid electrolyte intermediate phase (SEI) layers on the surface of electrodes. The results show that CMC and polyacrylic acid with carboxyl groups not only strengthened the bonding force between the current collectors and the silicon nanoparticles (SiNPs), also improved the linkage among SiNPs. Therefore, the loading weight of commercial Si was about 0.75 mg cm(-2), even after 150 deep cycles, and a high capacity of 1210.7 mAh g(-1) was resulted in the Si anode. The prepared novel high-performance binder shows a potential application on the silicon anode in lithium-ion batteries.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Synthesis of silicon nanosheets from kaolinite as a high-performance anode material for lithium-ion batteries
    Wang, Haoji
    Tang, Wei
    Ni, Lianshan
    Ma, Wei
    Chen, Gen
    Zhang, Ning
    Liu, Xiaohe
    Ma, Renzhi
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 137
  • [42] Self-supporting porous amorphous silicon anode for high-performance lithium-ion batteries
    Zhang, Jin
    Jiang, Zhigang
    Xu, Jingchao
    Duan, Jipeng
    Wang, Haoyue
    He, Yuanhuai
    Zhang, Wen
    Cao, Peng
    SCRIPTA MATERIALIA, 2025, 263
  • [43] Nickel Nanocone-Array Supported Silicon Anode for High-Performance Lithium-Ion Batteries
    Zhang, Shichao
    Du, Zhijia
    Lin, Ruoxu
    Jiang, Tao
    Liu, Guanrao
    Wu, Xiaomeng
    Weng, Dangsheng
    ADVANCED MATERIALS, 2010, 22 (47) : 5378 - +
  • [44] Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries
    Fang, Shan
    Tong, Zhenkun
    Nie, Ping
    Liu, Gao
    Zhang, Xiaogang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) : 18766 - 18773
  • [45] Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries
    Wu, Lili
    Yang, Juan
    Zhou, Xiangyang
    Zhang, Manfang
    Ren, Yongpeng
    Nie, Yang
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (29) : 11381 - 11387
  • [46] Novel approach with polyfluorene/polydisulfide copolymer binder for high-capacity silicon anode in lithium-ion batteries
    Bulut, Emrah
    Guzel, Emre
    Yuca, Neslihan
    Taskin, Omer S.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (04)
  • [47] Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries
    Huang, Shiqiang
    Cheong, Ling-Zhi
    Wang, Deyu
    Shen, Cai
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) : 23672 - 23678
  • [48] A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery
    Guo, Juchen
    Wang, Chunsheng
    CHEMICAL COMMUNICATIONS, 2010, 46 (09) : 1428 - 1430
  • [49] BIAN-Based Porous Organic Polymer as a High-Performance Anode for Lithium-Ion Batteries
    Mantripragada, Bharat Srimitra
    Badam, Rajashekar
    Matsumi, Noriyoshi
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (05) : 6903 - 6912
  • [50] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678