A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries

被引:30
|
作者
Yu, Lubing [1 ]
Liu, Jian [1 ,2 ,3 ]
He, Shuaishuai [1 ]
Huang, Cliaofan [1 ]
Gan, Lihui [1 ,2 ,3 ]
Gong, Zhengliang [1 ]
Long, Minnan [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Xicunen Key Lab Clean & High Valued Applicat Biom, Xiamen 361102, Fujian, Peoples R China
[3] Xiamen Univ, Fujian Engn & Res Ctr Clean & High Valued Technol, Xiamen 361102, Fujian, Peoples R China
关键词
3D polymer binder; Carboxymethylcellulose; Lithium-ion batteries; Silicon anode; WATER-SOLUBLE BINDER; CARBON SHELL; COMPOSITE; ALGINATE; POLYACRYLAMIDE; CAPABILITY; CELLULOSE;
D O I
10.1016/j.jpcs.2019.109113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For high-capacity silicon (Si) anodes, the design of new binder is a feasible way to overcome the rapid capacity decay attributed to the large volume change of silicon (Si) anode in the repeated charging/discharging process. Hire a newly designed binder with 3D structure was developed using CMC as the backbone, and acrylamide (AM), acrylic acid (AA) as the branch. The molecular structure was characterized by Fourier transform infrared (FTIR), and ethanol washing was applied for getting rid of unreacted monomers. The multifunctional binder with 3D structure and rich polar groups was prepared by cross-linking grafting. Polyacrylamide provides a strong adhesion and contributes to the formation of the solid electrolyte intermediate phase (SEI) layers on the surface of electrodes. The results show that CMC and polyacrylic acid with carboxyl groups not only strengthened the bonding force between the current collectors and the silicon nanoparticles (SiNPs), also improved the linkage among SiNPs. Therefore, the loading weight of commercial Si was about 0.75 mg cm(-2), even after 150 deep cycles, and a high capacity of 1210.7 mAh g(-1) was resulted in the Si anode. The prepared novel high-performance binder shows a potential application on the silicon anode in lithium-ion batteries.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries
    Song, Jiangxuan
    Zhou, Mingjiong
    Yi, Ran
    Xu, Terrence
    Gordin, Mikhail L.
    Tang, Duihai
    Yu, Zhaoxin
    Regula, Michael
    Wang, Donghai
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) : 5904 - 5910
  • [2] Novel polymeric binder for the silicon anode of lithium-ion batteries
    Hu, Bin
    Jiang, Sisi
    Zhang, Jingjing
    Zhang, Zhengcheng
    Zhang, Lu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [3] Water-Soluble Conductive Composite Binder for High-Performance Silicon Anode in Lithium-Ion Batteries
    Li, Zikai
    Guo, Anru
    Liu, Dong
    BATTERIES-BASEL, 2022, 8 (06):
  • [4] Structure-Performance Relationship of Aromatic Polymer Binder for Silicon Anode in Lithium-Ion Batteries
    Kim, Junho
    Kim, Gyuri
    Park, You Kyung
    Lim, Gayoung
    Kim, Seung Tae
    Jung, In Hwan
    Kim, Hansu
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (44)
  • [5] Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
    Zeng, Wenwu
    Wang, Lei
    Peng, Xiang
    Liu, Tiefeng
    Jiang, Youyu
    Qin, Fei
    Hu, Lin
    Chu, Paul K.
    Huo, Kaifu
    Zhou, Yinhua
    ADVANCED ENERGY MATERIALS, 2018, 8 (11)
  • [6] A semi-fluid multi-functional binder for a high-performance silicon anode of lithium-ion batteries
    Xu, Hui
    Liu, Xiaoxi
    Sun, Wenlu
    Xu, Guanghui
    Tong, Yihong
    Xu, Hongyuan
    Li, Jiawei
    Kong, Zhao
    Wang, Yong
    Lin, Zhiyong
    Jin, Hong
    Chen, Hongwei
    NANOSCALE, 2023, 15 (02) : 791 - 801
  • [7] 3D Covalent Polyoxovanadate-Organic Framework as Anode for High-Performance Lithium-Ion Batteries
    Zhao, Yingnan
    Li, Wenliang
    Li, Yingqi
    Qiu, Tianyu
    Mu, Xin
    Ma, Yuzhu
    Zhao, Yan
    Zhang, Jingping
    Zhang, Jiangwei
    Li, Yangguang
    Tan, Huaqiao
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (50)
  • [8] Novel conductive binder for high-performance silicon anodes in lithium ion batteries
    Liu, Dong
    Zhao, Yan
    Tan, Rui
    Tian, Lei-Lei
    Liu, Yidong
    Chen, Haibiao
    Pan, Feng
    NANO ENERGY, 2017, 36 : 206 - 212
  • [9] Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries
    Gao, Shilun
    Sun, Feiyuan
    Brady, Alexander
    Pan, Yiyang
    Erwin, Andrew
    Yang, Dandan
    Tsukruk, Vladimir
    Stack, Andrew G.
    Saito, Tomonori
    Yang, Huabin
    Cao, Peng-Fei
    NANO ENERGY, 2020, 73 (73)
  • [10] A Modified Natural Polysaccharide as a High-Performance Binder for Silicon Anodes in Lithium-Ion Batteries
    Hu, Shanming
    Cai, Zhixiang
    Huang, Tao
    Zhang, Hongbin
    Yu, Aishui
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) : 4311 - 4317