Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces

被引:230
|
作者
Fang, Kai [1 ,2 ]
Tang, Yiqi [1 ]
Zhang, Qifeng [1 ]
Song, Junnian [3 ]
Wen, Qi [4 ]
Sun, Huaping [5 ]
Ji, Chenyang [6 ]
Xu, Anqi [1 ]
机构
[1] Zhejiang Univ, Sch Publ Affairs, Yuhangtang Rd 866, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ctr Social Welf & Governance, Yuhangtang Rd 866, Hangzhou 310058, Zhejiang, Peoples R China
[3] Jilin Univ, Coll New Energy & Environm, Changchun 130012, Jilin, Peoples R China
[4] Ningxia Univ, Coll Resources & Environm Sci, Yinchuan 750021, Peoples R China
[5] Jiangsu Univ, Inst Ind Econ, Zhenjiang 212013, Jiangsu, Peoples R China
[6] Renmin Univ China, Sch Appl Econ, Beijing 100872, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Nationally Determined Contributions (NDCs); Sustainable Development Goals (SDGs); Emissions trajectory; Peaking time; Cumulative carbon emissions; Chinese provinces; ENVIRONMENTAL KUZNETS CURVE; CO2; EMISSIONS; DIOXIDE EMISSIONS; SCENARIO ANALYSIS; ECONOMIC-DEVELOPMENT; STIRPAT MODEL; CONSUMPTION; POPULATION; IMPACT; INCOME;
D O I
10.1016/j.apenergy.2019.113852
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
China has pledged in its Nationally Determined Contributions (NDCs) that its carbon emissions will peak no later than 2030. However, the varying carbon emissions trajectories of individual provinces make it difficult to determine whether China can fulfill this ambitious goal on time. To bring transparency and clarity to this core issue, this paper explores for the first time whether and how all the 30 Chinese provinces will peak their energy-related emissions in future by developing a set of extended STIRPAT models that investigate the driving forces behind each province and integrating the estimates into scenario analysis for peaking simulation. We observe that, despite continued economic growth, 26 provinces are highly likely to reach peak emissions under at least one scenario, whereas the remaining are not. We find it interesting that the earliest peaking scenarios may not be the best option for those provinces whose cumulative carbon emissions are estimated to be considerably large. To ensure a viable reaching of China's peak emissions, much more attention should be paid to seeking for the most appropriate emissions trajectory to peak at the subnational level with relatively low cumulative value. Provincial results in aggregate show that China may peak emissions in the period 2028-2040, with cumulative emissions ranging from 403,607 Mt CO2 (corresponding to peaking in 2030) to 456,191 Mt CO2 (corresponding to peaking in 2038), while 2030 would be the optimal year for the country to peak because of the lowest cumulative carbon emissions. Our findings only provide a deeper understanding of China's potential peaking paths by province, but also assist policy makers in better prediction and evaluation of possible emissions trajectory for other nations and the whole world from a bottom-up perspective, and therefore could be of global significance.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Decomposition and decoupling analysis of energy-related carbon emissions in Turkey
    Etem Karakaya
    Aziz Bostan
    Mustafa Özçağ
    Environmental Science and Pollution Research, 2019, 26 : 32080 - 32091
  • [42] Impact of Financial Inclusion on the Efficiency of Carbon Emissions: Evidence from 30 Provinces in China
    Zhang, Xu
    Sun, Huaping
    Wang, Taohong
    ENERGIES, 2022, 15 (19)
  • [43] Trend analysis for the projection of energy-related carbon dioxide emissions
    Tutmez, Bulent
    ENERGY EXPLORATION & EXPLOITATION, 2006, 24 (1-2) : 139 - 149
  • [44] Decomposition and decoupling analysis of energy-related carbon emissions in Turkey
    Karakaya, Etem
    Bostan, Aziz
    Ozcag, Mustafa
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (31) : 32080 - 32091
  • [45] An analysis of the driving forces of energy-related carbon dioxide emissions in China's industrial sector
    Ouyang, Xiaoling
    Lin, Boqiang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 45 : 838 - 849
  • [46] Decoupling effect and sectoral attribution analysis of industrial energy-related carbon emissions in Xinjiang, China
    Zhang, Xinlin
    Zhao, Yuan
    Wang, Changjian
    Wang, Fei
    Qiu, Fangdao
    ECOLOGICAL INDICATORS, 2019, 97 : 1 - 9
  • [47] Decoupling China's economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001-2015)
    Wu, Ya
    Tam, Vivian W. Y.
    Shuai, Chenyang
    Shen, Liyin
    Zhang, Yu
    Liao, Shiju
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 656 : 576 - 588
  • [48] Study on factors influencing carbon dioxide emissions and carbon peak heterogenous pathways in Chinese provinces
    Liu, Runpu
    Fang, Yan Ru
    Peng, Shuan
    Benani, Nihed
    Wu, Xuefang
    Chen, Yushuo
    Wang, Tao
    Chai, Qimin
    Yang, Pingjian
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 365
  • [49] Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective
    Xu, Xianshuo
    Zhao, Tao
    Liu, Nan
    Kang, Jidong
    APPLIED ENERGY, 2014, 132 : 298 - 307
  • [50] Disparities in driving forces behind energy-related black carbon emission changes across China's provinces
    Kang, Ping
    Deng, Zhongci
    Zhang, Xiaoling
    Wang, Zhen
    Li, Weijie
    Qi, Hong
    Lei, Yu
    Ou, Yihan
    Deng, Zhongren
    JOURNAL OF CLEANER PRODUCTION, 2022, 330