Hermite-Hadamard-Fejer Inequality Related to Generalized Convex Functions via Fractional Integrals

被引:24
|
作者
Delavar, M. Rostamian [1 ]
Aslani, S. Mohammadi [2 ]
De La Sen, M. [3 ]
机构
[1] Univ Bojnord, Fac Basic Sci, Dept Math, Bojnord, Iran
[2] Islamic Azad Univ, Karaj Branch, Dept Math, Karaj, Iran
[3] Univ Basque Country, Inst Res & Dev Proc, Campus Leioa,Aptdo 644, Bilbao 48080, Spain
关键词
D O I
10.1155/2018/5864091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with Hermite-Hadamard-Fejer inequality for (eta(1), eta(2))-convex functions via fractional integrals. Some mid-point and trapezoid type inequalities related to Hermite-Hadamard inequality when the absolute value of derivative of considered function is(eta(1), eta(2))-convex functions are obtained. Furthermore, a refinement for classic Hermite-Hadamard inequality via fractional integrals is given when a positive (eta(1), eta(2))-convex function is increasing.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals
    Chen, Feixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 121 - 128
  • [32] On the Hermite–Hadamard type inequality for ψ-Riemann–Liouville fractional integrals via convex functions
    Kui Liu
    JinRong Wang
    Donal O’Regan
    Journal of Inequalities and Applications, 2019
  • [33] Weighted Midpoint Hermite-Hadamard-Fejer Type Inequalities in Fractional Calculus for Harmonically Convex Functions
    Kalsoom, Humaira
    Vivas-Cortez, Miguel
    Amer Latif, Muhammad
    Ahmad, Hijaz
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [34] ON SOME HERMITE-HADAMARD-FEJER INEQUALITIES FOR (k, h)-CONVEX FUNCTIONS
    Micherda, Bartosz
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 931 - 940
  • [35] A Generalized Fejer-Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results
    Kang, Shin Min
    Abbas, Ghulam
    Farid, Ghulam
    Nazeer, Waqas
    MATHEMATICS, 2018, 6 (07):
  • [36] Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals
    Xue-Xiao You
    Muhammad Aamir Ali
    Hüseyin Budak
    Praveen Agarwal
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2021
  • [37] Hermite-Hadamard-Fejer Type Inequalities for (k, h)-Convex Function via Riemann-Liouville and Conformable Fractional Integrals
    Set, Erhan
    Karaoglan, Ali
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [38] ON THE HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS VIA HADAMARD FRACTIONAL INTEGRALS
    Peng, Shan
    Wei, Wei
    Wang, JinRong
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (01): : 55 - 75
  • [39] ON NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR HARMONICALLY QUASI CONVEX FUNCTIONS
    Turhan, Sercan
    Iscan, Imdat
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 734 - 749
  • [40] New Hermite-Hadamard-Fejer type inequalities for GA-convex functions
    Maden, Selahattin
    Turhan, Sercan
    Iscan, Imdat
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726