FAGON: Fake News Detection Model Using Grammatical Transformation on Deep Neural Network

被引:0
|
作者
Seo, Youngkyung [1 ]
Han, Seong-Soo [2 ]
Jeon, You-Boo [3 ]
Jeong, Chang-Sung [1 ]
机构
[1] Korea Univ, Dept Elect Engn, Seoul, South Korea
[2] Korea Univ, Visual Informat Proc, Seoul, South Korea
[3] Soonchunhyang Univ, Dept Comp Software Engn, Asan, Chungcheongnam, South Korea
基金
新加坡国家研究基金会;
关键词
Fake news detection; Grammatical transformation; Deep neural network;
D O I
10.3837/tiis.2019.10.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As technology advances, the amount of fake news is increasing more and more by various reasons such as political issues and advertisement exaggeration. However, there have been very few research works on fake news detection, especially which uses grammatical transformation on deep neural network. In this paper, we shall present a new Fake News Detection Model, called FAGON(Fake news detection model using Grammatical transformation On deep Neural network) which determines efficiently if the proposition is true or not for the given article by learning grammatical transformation on neural network. Especially, our model focuses the Korean language. It consists of two modules: sentence generator and classification. The former generates multiple sentences which have the same meaning as the proposition, but with different grammar by training the grammatical transformation. The latter classifies the proposition as true or false by training with vectors generated from each sentence of the article and the multiple sentences obtained from the former model respectively. We shall show that our model is designed to detect fake news effectively by exploiting various grammatical transformation and proper classification structure.
引用
收藏
页码:4958 / 4970
页数:13
相关论文
共 50 条
  • [31] Deep Ensemble Fake News Detection Model Using Sequential Deep Learning Technique
    Ali, Abdullah Marish
    Ghaleb, Fuad A.
    Al-Rimy, Bander Ali Saleh
    Alsolami, Fawaz Jaber
    Khan, Asif Irshad
    SENSORS, 2022, 22 (18)
  • [32] OPCNN-FAKE: Optimized Convolutional Neural Network for Fake News Detection
    Saleh, Hager
    Alharbi, Abdullah
    Alsamhi, Saeed Hamood
    IEEE ACCESS, 2021, 9 (09): : 129471 - 129489
  • [33] CSI: A Hybrid Deep Model for Fake News Detection
    Ruchansky, Natali
    Seo, Sungyong
    Liu, Yan
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 797 - 806
  • [34] Merging deep learning model for fake news detection
    Amine, Belhakimi Mohamed
    Drif, Ahlem
    Giordano, Silvia
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRICAL ENGINEERING (ICAEE), 2019,
  • [35] Deep Diffusive Neural Network based Fake News Detection from Heterogeneous Social Networks
    Zhang, Jiawei
    Dong, Bowen
    Yu, Philip S.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 1259 - 1266
  • [36] GETAE: Graph Information Enhanced Deep Neural NeTwork Ensemble ArchitecturE for fake news detection
    Truica, Ciprian-Octavian
    Apostol, Elena-Simona
    Marogel, Marius
    Paschke, Adrian
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 275
  • [37] Convolutional neural network with margin loss for fake news detection
    Goldani, Mohammad Hadi
    Safabakhsh, Reza
    Momtazi, Saeedeh
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (01)
  • [38] A shallow-based neural network model for fake news detection in social networks
    Ramya, S. P.
    Eswari, R.
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 21 (3-4) : 360 - 382
  • [39] Fake News Detection with Heterogenous Deep Graph Convolutional Network
    Kang, Zhezhou
    Cao, Yanan
    Shang, Yanmin
    Liang, Tao
    Tang, Hengzhu
    Tong, Lingling
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 408 - 420
  • [40] Efficient Fake News Detection Mechanism Using Enhanced Deep Learning Model
    Ahmad, Tahir
    Faisal, Muhammad Shahzad
    Rizwan, Atif
    Alkanhel, Reem
    Khan, Prince Waqas
    Muthanna, Ammar
    APPLIED SCIENCES-BASEL, 2022, 12 (03):