EXACT TRAVELING WAVE SOLUTIONS OF A HIGHER-DIMENSIONAL NONLINEAR EVOLUTION EQUATION

被引:45
|
作者
Lee, Jonu [2 ]
Sakthivel, Rathinasamy [1 ]
Wazzan, Luwai [3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Kyung Hee Univ, Coll Appl Sci, Yongin 446701, South Korea
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
来源
MODERN PHYSICS LETTERS B | 2010年 / 24卷 / 10期
关键词
Higher-dimensional nonlinear equation; traveling wave solutions; Exp-function method; extended Jacobi elliptic function method; modified tanh-coth method; EXP-FUNCTION METHOD; VARIATIONAL ITERATION METHOD; HOMOTOPY PERTURBATION METHOD; COMPLEXITON SOLUTIONS; SOLITON-SOLUTIONS; TANH;
D O I
10.1142/S0217984910023062
中图分类号
O59 [应用物理学];
学科分类号
摘要
The exact traveling wave solutions of (4 + 1)-dimensional nonlinear Fokas equation is obtained by using three distinct methods with symbolic computation. The modified tanh-coth method is implemented to obtain single soliton solutions where as the extended Jacobi elliptic function method is applied to derive doubly periodic wave solutions for this higher-dimensional integrable equation. The Exp-function method gives generalized wave solutions with some free parameters. It is shown that soliton solutions and triangular solutions can be established as the limits of the Jacobi doubly periodic wave solutions.
引用
收藏
页码:1011 / 1021
页数:11
相关论文
共 50 条