Koszul algebras and quadratic duals in Galois cohomology

被引:15
|
作者
Minac, Jan [1 ]
Pasini, Federico William [2 ]
Quadrelli, Claudio [3 ]
Tan, Nguye Duy [4 ]
机构
[1] Univ Western Ontario, Middlesex Coll, Dept Math, London, ON, Canada
[2] Univ Western Ontario, Middlesex Coll, Dept Appl Math, London, ON, Canada
[3] Univ Milano Bicocca, Dept Math & Applicat, Via R Cozzi 55,Ed U5, Milan, Italy
[4] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet Rd, Hanoi, Vietnam
基金
加拿大自然科学与工程研究理事会;
关键词
Galois cohomology; Quadratic algebras; Koszul algebras; Elementary type conjecture; Zassenhaus filtration;
D O I
10.1016/j.aim.2021.107569
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Galois cohomology of finitely generated maximal pro-p quotients of absolute Galois groups. Assuming the well-known conjectural description of these groups, we show that Galois cohomology has the PBW property. Hence in particular it is a Koszul algebra. This answers positively a conjecture by Positselski in this case. We also provide an analogous unconditional result about Pythagorean fields. Moreover, we establish some results that relate the quadratic dual of Galois cohomology with the p-Zassenhaus filtration on the group. This paper also contains a survey of Koszul property in Galois cohomology and its relation with absolute Galois groups. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:49
相关论文
共 50 条
  • [1] KOSZUL DUALITY AND GALOIS COHOMOLOGY
    Positselski, Leonid
    Vishik, Alexander
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (06) : 771 - 781
  • [2] Galois cohomology of a number field is Koszul
    Positselski, Leonid
    JOURNAL OF NUMBER THEORY, 2014, 145 : 126 - 152
  • [3] Enhanced Koszul properties in Galois cohomology
    Minac, Jan
    Palaisti, Marina
    Pasini, Federico W.
    Nguyen Duy Tan
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2020, 7 (02)
  • [4] Enhanced Koszul properties in Galois cohomology
    Ján Mináč
    Marina Palaisti
    Federico W. Pasini
    Nguyễn Duy Tân
    Research in the Mathematical Sciences, 2020, 7
  • [5] QUADRATIC DUALS, KOSZUL DUAL FUNCTORS, AND APPLICATIONS
    Mazorchuk, Volodymyr
    Ovsienko, Serge
    Stroppel, Catharina
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (03) : 1129 - 1172
  • [6] Koszul algebras and finite Galois coverings
    DeKe Zhao
    Yang Han
    Science in China Series A: Mathematics, 2009, 52 : 2145 - 2153
  • [7] Koszul algebras and finite Galois coverings
    Zhao Deke
    Han Yang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10): : 2145 - 2153
  • [8] Koszul algebras and finite Galois coverings
    ZHAO DeKe & HAN Yang KLMM
    Science China Mathematics, 2009, (10) : 2145 - 2153
  • [9] The cohomology of Koszul-Vinberg algebras
    Boyom, Michel Nguiffo
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 225 (01) : 119 - 153
  • [10] Cohomology of tails and stable cohomology over Koszul quiver algebras
    Villa, RM
    Martsinkovsky, A
    REPRESENTATIONS OF ALGEBRAS AND RELATED TOPICS, 2005, 45 : 299 - 306