Titania-zinc phosphate/nanocrystalline zinc composite coatings for corrosion protection of biomedical WE43 magnesium alloy

被引:20
|
作者
Li, Jingyao [1 ]
Li, Jian [1 ]
Li, Qingyang [1 ]
Zhou, Haili [1 ]
Wang, Guomin [2 ,3 ]
Peng, Xiang [4 ]
Jin, Weihong [1 ,2 ,3 ]
Yu, Zhentao [1 ]
Chu, Paul K. [2 ,3 ]
Li, Wei [1 ]
机构
[1] Jinan Univ, Inst Adv Wear & Corros Resistant & Funct Mat, Guangzhou 510632, Peoples R China
[2] City Univ Hong Kong, Dept Phys, Dept Mat Sci & Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Biomed Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[4] Sch Mat Sci & Engn, Wuhan Inst Technol, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Peoples R China
来源
关键词
Biodegradable magnesium alloys; Coatings; Corrosion; Chemical conversion; Nanocrystalline zinc; SIMULATED BODY-FLUID; IN-VIVO; CONVERSION COATINGS; ENHANCED CORROSION; MG ALLOY; BEHAVIOR; RESISTANCE; PHOSPHATE; STENT; FUNCTIONALIZATION;
D O I
10.1016/j.surfcoat.2021.126940
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Biodegradable medical implants made of magnesium (Mg) alloys must have sufficient corrosion resistance in clinical applications. Herein, a nanocrystalline zinc (Zn) coating is electrodeposited on the WE43 Mg alloy followed by a chemical conversion treatment to produce a titania-Zn phosphate layer. The Zn coating has a rice-like nanostructure and the conversion layer is composed of ZnO, Zn-3(PO4)(2), and TiO2. The Zn coating reduces the corrosion current density of the WE43 Mg alloy from 151.1 +/- 13.8 mu A cm(-2) to 29.4 +/- 7.4 mu A cm(-2) in the simulated body fluid (SBF), while the composite coating decreases it to 4.1 +/- 0.8 mu A cm(-2). The surface morphology, pH variation, and average corrosion rates after immersion for 7 days in SBF reveal that the Zn coating in fact accelerates dissolution of the Mg substrate due to the formation of galvanic couples between the Zn coating and Mg alloy substrate. In comparison, only slight corrosion is observed from limited areas on the sample with the composite coating. The titania-Zn phosphate/nanocrystalline Zn composite coating provides long-term protection in the physiological environment and the protection mechanism is discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Microstructure and corrosion behaviour of laser surface melting treated WE43 magnesium alloy
    Liu C.
    Li Q.
    Liang J.
    Zhou J.
    Wang L.
    Liang, Jun (jliang@licp.cas.cn), 1600, Royal Society of Chemistry (06): : 30642 - 30651
  • [42] Long-Term in Vitro Corrosion of Biodegradable WE43 Magnesium Alloy in DMEM
    Nachtsheim, Julia
    Burja, Jaka
    Ma, Songyun
    Markert, Bernd
    METALS, 2022, 12 (12)
  • [43] Improvement in corrosion resistance of WE43 magnesium alloy by the electrophoretic formation of a ZnO surface coating
    J. E. Qu
    M. Ascencio
    L. M. Jiang
    S. Omanovic
    L. X. Yang
    Journal of Coatings Technology and Research, 2019, 16 : 1559 - 1570
  • [44] In situ preparation of MAO/TiO2 composite coating on WE43 alloy for anti-corrosion protection
    Zhang, Shiliang
    Guo, Wei
    Liu, Ning
    Xia, Chaoqun
    Wang, Hongshui
    Liang, Chunyong
    VACUUM, 2022, 197
  • [45] Improvement in corrosion resistance of WE43 magnesium alloy by the electrophoretic formation of a ZnO surface coating
    Qu, J. E.
    Ascencio, M.
    Jiang, L. M.
    Omanovic, S.
    Yang, L. X.
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2019, 16 (06) : 1559 - 1570
  • [46] A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting
    Esmaily, M.
    Zeng, Z.
    Mortazavi, A. N.
    Gullino, A.
    Choudhary, S.
    Derra, T.
    Benn, F.
    D'Elia, F.
    Muether, M.
    Thomas, S.
    Huang, A.
    Allanore, A.
    Kopp, A.
    Birbilis, N.
    ADDITIVE MANUFACTURING, 2020, 35
  • [47] Effect of high energy shot peening on electrochemical corrosion resistance of WE43 magnesium alloy
    Gao Wen
    Wang Shou-ren
    Wang Gao-qi
    Zhou Ji-xue
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ENGINEERING MANAGEMENT (ICONF-EM 2016), 2016, 30 : 227 - 232
  • [48] Improved corrosion resistance of biodegradable WE43 magnesium alloy modified by Sn film deposition
    Wang, Xinxuan
    Liu, Xuhui
    Ren, Luyang
    Xiao, Shiliang
    Dai, Yilong
    Lu, Liwei
    She, Jia
    Qi, Fugang
    Zhang, Dechuang
    Ouyang, Xiaoping
    MATERIALS LETTERS, 2023, 333
  • [49] Electrochemical determination of corrosion protection properties of chromated zinc, zinc alloy and cadmium electroplated coatings
    Dobrev, T
    Monev, M
    Krastev, I
    Richtering, W
    Zlatev, R
    Rashkov, S
    TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 1996, 74 : 45 - 50
  • [50] Corrosion behavior and biocompatibility of hydroxyapatite/magnesium phosphate/zinc phosphate composite coating deposited on AZ31 alloy
    Huang, Wei
    Xu, Bin
    Yang, Wenzhong
    Zhang, Kegui
    Chen, Yun
    Yin, Xiaoshuang
    Liu, Ying
    Ni, Zhuoyao
    Pei, Feng
    SURFACE & COATINGS TECHNOLOGY, 2017, 326 : 270 - 280