Stabilization of an inverted pendulum with a fixed or movable suspension point

被引:5
|
作者
Formal'skii, A. M. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Inst Mech, Moscow 117192, Russia
基金
俄罗斯基础研究基金会;
关键词
Inverted Pendulum; Suspension Point;
D O I
10.1134/S1064562406010406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An invested pendulum with a fixed or movable suspension point is stabilized. The plane motion of controlled one-link pendulum with a fixed suspension point or a suspensions point attached to the center of wheel that roles on a smooth horizontal surface is consider. The control torque applied to the pendulum at the suspension point is bounded in absolute value. It is shown that the controllability domain for the pendulum with a suspension point attached to wheel is larger than that of pendulum with a fixed suspension point.
引用
收藏
页码:152 / 156
页数:5
相关论文
共 50 条
  • [31] OPTIMAL PARAMETRIC STABILIZATION OF AN INVERTED PENDULUM
    ROZENBLAT, GM
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1981, 45 (01): : 45 - 50
  • [32] On stabilization of rotational modes of an inverted pendulum
    Shiriaev, AS
    Friesel, A
    Perram, J
    Pogromsky, A
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 5047 - 5052
  • [33] Switching Stabilization for the Inverted Pendulum System
    Song Yang
    Xie Jin-xia
    Shi Yi-qing
    Jia Li
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1033 - 1036
  • [34] Friction and the inverted pendulum stabilization problem
    Campbell, Sue Ann
    Crawford, Stephanie
    Morris, Kirsten
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (05): : 0545021 - 0545027
  • [35] Stabilization of inverted pendulum by the genetic algorithm
    Omatu, S
    Deris, S
    ETFA '96 - 1996 IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, PROCEEDINGS, VOLS 1 AND 2, 1996, : 282 - 287
  • [36] On Stabilization and Disturbance Rejection for the Inverted Pendulum
    Zhang Chao
    Zhu Jihong
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 3750 - 3754
  • [37] An inverted pendulum on a fixed and a moving base
    Formal'skii, A.M.
    Journal of Applied Mathematics and Mechanics, 2006, 70 (01): : 56 - 64
  • [38] An inverted pendulum on a fixed and a moving base
    Formal'skii, A. M.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2006, 70 (01): : 56 - 64
  • [39] Generating equations with genetic programming for control of a movable inverted pendulum
    Shimooka, H
    Fujimoto, Y
    SIMULATED EVOLUTION AND LEARNING, 1999, 1585 : 179 - 186
  • [40] Stabilization of a Double Inverted Pendulum Installed on a Seesaw
    Formalskii, A. M.
    Kruchinin, P. A.
    Voitsitskaya, K. L.
    MECHANICS OF SOLIDS, 2021, 56 (08) : 1599 - 1610