A generalized (meshfree) finite difference discretization for elliptic interface problems

被引:0
|
作者
Iliev, O [1 ]
Tiwari, S [1 ]
机构
[1] Fraunhofer Inst Ind Math, D-67663 Kaiserslautern, Germany
来源
关键词
elliptic equation; discontinuous coefficients; interface problem; moving least squares method; meshfree method;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The aim of this paper is twofold. First, two generalized (meshfree) finite difference methods (GFDM) for the Poisson equation are discussed. These are methods due to Liszka and Orkisz (1980) [10] and to Tiwaxi (2001) [7]. Both methods are based on using moving least squares (MLS) approach for deriving the discretization. The relative comparison shows, that the second method is preferable because it is less sensitive to the topological restrictions on the nodes distribution. Next, an extension of the second method is presented, which allows for accounting for internal interfaces, associated with discontinuous coefficients. Results from numerical experiments illustrate the second order convergence of the proposed GFDM for interface problems.
引用
收藏
页码:488 / 497
页数:10
相关论文
共 50 条
  • [41] Robust Finite Element Discretization and Solvers for Distributed Elliptic Optimal Control Problems
    Langer, Ulrich
    Loescher, Richard
    Steinbach, Olaf
    Yang, Huidong
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (04) : 989 - 1005
  • [42] Schwarz Methods for a Crouzeix-Raviart Finite Volume Discretization of Elliptic Problems
    Marcinkowski, Leszek
    Loneland, Atle
    Rahman, Talal
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 595 - 602
  • [43] Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems
    L. Marcinkowski
    T. Rahman
    A. Loneland
    J. Valdman
    BIT Numerical Mathematics, 2016, 56 : 967 - 993
  • [44] Robust finite element discretization and solvers for distributed elliptic optimal control problems
    Langer, Ulrich
    Löscher, Richard
    Steinbach, Olaf
    Yang, Huidong
    arXiv, 2022,
  • [45] Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems
    Marcinkowski, L.
    Rahman, T.
    Loneland, A.
    Valdman, J.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (03) : 967 - 993
  • [46] A FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS WITH IMPLICIT JUMP CONDITION
    Cao, Fujun
    Yuan, Dongfang
    Sheng, Zhiqiang
    Yuan, Guangwei
    He, Limin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (04) : 439 - 457
  • [47] A generalized isogeometric analysis of elliptic eigenvalue and source problems with an interface
    Zhang, Jicheng
    Deng, Quanling
    Li, Xin
    Journal of Computational and Applied Mathematics, 2022, 407
  • [48] THE LPDEM, A MIXED FINITE-DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS
    JAI, M
    BAYADA, G
    CHAMBAT, M
    NUMERISCHE MATHEMATIK, 1992, 63 (02) : 195 - 211
  • [49] CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS
    Cangiani, Andrea
    Manzini, Gianmarco
    Russo, Alessandro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2612 - 2637
  • [50] A generalized isogeometric analysis of elliptic eigenvalue and source problems with an interface
    Zhang, Jicheng
    Deng, Quanling
    Li, Xin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 407