Solving the direct geometrico-static problem of underconstrained cable-driven parallel robots by interval analysis

被引:64
|
作者
Berti, Alessandro [1 ]
Merlet, Jean-Pierre [2 ]
Carricato, Marco [1 ]
机构
[1] Univ Bologna, Dept Ind Engn, Viale Risorgimento 2, I-40136 Bologna, Italy
[2] Natl Res Inst Comp Sci & Automat, Sophia Antipolis, France
来源
关键词
Cable-driven parallel robots; underconstrained robots; interval analysis; forward kinematics; static analysis; FREEDOM POSITIONING MECHANISM; OF-FREEDOM; DESIGN; KINEMATICS; MANIPULATORS; GENERATION; PLANAR; WIRES;
D O I
10.1177/0278364915595277
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper presents an efficient interval-analysis-based algorithm to solve the direct geometrico-static problem (DGP) of underconstrained cable-driven parallel robots (CDPRs). Solving the DGP for a generic CDPR consists of finding all possible equilibrium poses of the end effector for the given cable lengths. Since cables impose unilateral constraints, configurations with one or more slack cables may occur. When the number of taut cables is smaller than six the robot is underconstrained and the DGP solutions must be found considering loop-closure and mechanical equilibrium equations simultaneously. The presented algorithm can find all DGP solutions of a generic CDPR in a numerically robust and safe way. By using interval analysis the proposed procedure can directly search for real solutions with non-negative cable tensions and it can take advantage of the physical constraints of the robot. The implemented procedure is discussed in detail, and the testing and experimental validation on working prototypes are presented.
引用
收藏
页码:723 / 739
页数:17
相关论文
共 50 条
  • [31] On the Forward Kinematics of Cable-Driven Parallel Robots
    Pott, Andreas
    Schmidt, Valentin
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3182 - 3187
  • [32] Energy Efficiency of Cable-Driven Parallel Robots
    Kraus, Werner
    Spiller, Alexander
    Pott, Andreas
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 894 - 901
  • [33] On the workspace of suspended cable-driven parallel robots
    Merlet, J-P.
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 841 - 846
  • [34] Interference Determination for Parallel Cable-Driven Robots
    Su, Yu
    Mi, Jianwei
    Qiu, Yuanying
    ADVANCED DESIGN TECHNOLOGY, PTS 1-3, 2011, 308-310 : 2013 - 2018
  • [35] An approach on stability analysis of cable-driven parallel robots considering cable mass
    Wei, Huiling
    Qiu, Yuanying
    Luo, Lufeng
    Lu, Qinghua
    AIP ADVANCES, 2021, 11 (05)
  • [36] Static Analysis and Dimensional Optimization of a Cable-Driven Parallel Robot
    Newman, Matthew
    Zygielbaum, Arthur
    Terry, Benjamin
    CABLE-DRIVEN PARALLEL ROBOTS, 2018, 53 : 152 - 166
  • [37] Synchronization Control in the Cable Space for Cable-Driven Parallel Robots
    Shang, Weiwei
    Zhang, Bingyuan
    Zhang, Bin
    Zhang, Fei
    Cong, Shuang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (06) : 4544 - 4554
  • [38] Importance of cable vibration in dynamics of cable-driven parallel robots
    Courteille, E.
    Yuan, H.
    MECHANIKA 2016: PROCEEDINGS OF THE 21ST INTERNATIONAL SCIENTIFIC CONFERENCE, 2016, : 67 - 72
  • [39] Determination of the Cable Span and Cable Deflection of Cable-Driven Parallel Robots
    Pott, Andreas
    CABLE-DRIVEN PARALLEL ROBOTS, 2018, 53 : 106 - 116
  • [40] Checking the cable configuration of cable-driven parallel robots on a trajectory
    Merlet, Jean-Pierre
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 1586 - 1591