Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields

被引:141
|
作者
Koc, CK [1 ]
Sunar, B [1 ]
机构
[1] Oregon State Univ, Dept Elect & Comp Engn, Corvallis, OR 97331 USA
关键词
finite fields; multiplication; normal basis; canonical basis; all-one-polynomial;
D O I
10.1109/12.660172
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new low-complexity bit-parallel canonical basis multiplier for the field GF(2(m)) generated by an all-one-polynomial. The proposed canonical basis multiplier requires m(2) - 1 XOR gates and m(2) AND gates. We also extend this canonical basis multiplier to obtain a new bit-parallel normal basis multiplier.
引用
收藏
页码:353 / 356
页数:4
相关论文
共 50 条
  • [31] Reconfigurable implementation of bit-parallel multipliers over GF(2m) for two classes of finite fields
    Imaña, JL
    2004 IEEE INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY, PROCEEDINGS, 2004, : 287 - 290
  • [32] Bit-parallel systolic modular multipliers for a class of GF(2m)
    Lee, CY
    Lu, EH
    Lee, JY
    ARITH-15 2001: 15TH SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2001, : 51 - 58
  • [33] Low-complexity bit-serial sequential polynomial basis finite field GF(2m) Montgomery multipliers
    Pillutla, Siva Ramakrishna
    Boppana, Lakshmi
    MICROPROCESSORS AND MICROSYSTEMS, 2021, 84
  • [34] Bit-parallel finite field multiplier and squarer using polynomial basis
    Wu, HP
    IEEE TRANSACTIONS ON COMPUTERS, 2002, 51 (07) : 750 - 758
  • [35] Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis
    Xie, Jiafeng
    Lee, Chiou-Yng
    Meher, Pramod Kumar
    Mao, Zhi-Hong
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2019, 27 (09) : 2119 - 2130
  • [36] Low complexity bit-parallel multipliers for GF(2m) with generator polynomial xm+xk+1
    Elia, M
    Leone, M
    Visentin, C
    ELECTRONICS LETTERS, 1999, 35 (07) : 551 - 552
  • [37] Low-complexity bit-parallel square root computation over GF(2m) for all trinomials
    Rodriguez-Henriquez, Francisco
    Morales-Luna, Guillermo
    Lopez, Julio
    IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (04) : 472 - 480
  • [38] Low complexity of a class of normal bases over finite fields
    Liao, Qunying
    You, Lin
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) : 1 - 14
  • [39] Low-complexity modified Mastrovito multipliers over finite fields GF(2M)
    Song, LL
    Parhi, KK
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 1: VLSI, 1999, : 508 - 512
  • [40] Low-complexity bit-serial constant-coefficient multipliers
    Johansson, K
    Gustasson, O
    Wanhammar, L
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3, PROCEEDINGS, 2004, : 649 - 652