RECTIFYING CURVES ON A SMOOTH SURFACE IMMERSED IN THE EUCLIDEAN SPACE

被引:13
|
作者
Shaikh, Absos Ali [1 ]
Ghosh, Pinaki Ranjan [1 ]
机构
[1] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
来源
关键词
Rectifying curve; Frenet-Serret equation; isometry of surfaces; first fundamental form;
D O I
10.1007/s13226-019-0361-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main objective of the present paper is to investigate a sufficient condition for which a rectifying curve on a smooth surface remains invariant under isometry of surfaces, and also it is shown that under such an isometry the component of the position vector of a rectifying curve on a smooth surface along the normal to the surface is invariant.
引用
收藏
页码:883 / 890
页数:8
相关论文
共 50 条
  • [21] Application of the Geometry of Curves in Euclidean Space
    Trencevski, Kostadin
    FILOMAT, 2019, 33 (04) : 1029 - 1036
  • [22] HIGHER CURVATURES OF CURVES IN EUCLIDEAN SPACE
    GLUCK, H
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (07): : 699 - &
  • [23] FRAMING CURVES IN EUCLIDEAN AND MINKOWSKI SPACE
    Low, Robert J.
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2012, 27 : 83 - 91
  • [24] ON FRAMED TZITZEICA CURVES IN EUCLIDEAN SPACE
    Yazici, Bahar Dogan
    Karakus, Siddika Ozkaldi
    Tosun, Murat
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (02): : 307 - 319
  • [25] ZINDLER CURVES IN EUCLIDEAN-SPACE
    POTTMANN, H
    MANUSCRIPTA MATHEMATICA, 1988, 60 (02) : 217 - 220
  • [26] On the Quaternionic Normal Curves in the Euclidean Space
    Yildiz, Onder Gokmen
    Karakus, Siddika Ozkaldi
    THAI JOURNAL OF MATHEMATICS, 2024, 22 (03): : 533 - 543
  • [27] A STUDY ON RECTIFYING CURVES IN THE DUAL LORENTZIAN SPACE
    Ozbey, Emine
    Oral, Mehmet
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 967 - 978
  • [28] Quaternionic osculating curves in Euclidean and semi-Euclidean space
    Bektas, Ozcan
    Gurses, Nurten
    Yuce, Salim
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2016, 14 (01) : 65 - 84
  • [29] On surfaces immersed in Euclidean space R4
    ChiaKuei Peng
    ZiZhou Tang
    Science in China Series A: Mathematics, 2010, 53 : 251 - 256
  • [30] On surfaces immersed in Euclidean space R4
    Peng ChiaKuei
    Tang ZiZhou
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (01) : 251 - 256