Topological Phases of Parafermions: A Model with Exactly Solvable Ground States

被引:27
|
作者
Iemini, Fernando [1 ,2 ,3 ]
Mora, Christophe [4 ]
Mazza, Leonardo [5 ]
机构
[1] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] Ist Nanosci CNR, I-56126 Pisa, Italy
[4] Univ Paris Diderot, Univ Pierre & Marie Curie, Sorbonne Univ,Sorbonne Paris Cite,CNRS, Lab Pierre Aigrain,Ecole Normale Super,PSL Res U, 24 Rue Lhomond, F-75231 Paris 05, France
[5] PSL Res Univ, CNRS, Ecole Normale Super, Dept Phys, 24 Rue Lhomond, F-75005 Paris, France
关键词
QUANTUM; ANYONS; CHAIN; ORDER;
D O I
10.1103/PhysRevLett.118.170402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parafermions are emergent excitations that generalize Majorana fermions and can also realize topological order. In this Letter, we present a nontrivial and quasi-exactly-solvable model for a chain of parafermions in a topological phase. We compute and characterize the ground-state wave functions, which are matrix-product states and have a particularly elegant interpretation in terms of Fock parafermions, reflecting the factorized nature of the ground states. Using these wave functions, we demonstrate analytically several signatures of topological order. Our study provides a starting point for the nonapproximate study of topological one-dimensional parafermionic chains with spatial inversion and time-reversal symmetry in the absence of strong edge modes.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] An exactly solvable model for quantum communications
    Smith, Graeme
    Smolin, John A.
    NATURE, 2013, 504 (7479) : 263 - 267
  • [42] Diffraction in time: An exactly solvable model
    Goussev, Arseni
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [43] EXACTLY SOLVABLE POTENTIAL MODEL FOR QUARKONIA
    IZMESTEV, AA
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1990, 52 (06): : 1068 - 1076
  • [44] EXACTLY SOLVABLE MODEL OF FERMIONS WITH DISORDER
    TSVELIK, AM
    PHYSICAL REVIEW B, 1995, 51 (15): : 9449 - 9454
  • [45] EXACTLY SOLVABLE MODEL WITH A MULTICRITICAL POINT
    LUBAN, M
    HORNREICH, RM
    SHTRIKMAN
    PHYSICA B & C, 1977, 86 (JAN-M): : 605 - 606
  • [46] Bifurcations of an exactly solvable model of rotordynamics
    Kucherenko, VV
    Gómez-Mancilla, JC
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (12): : 2689 - 2699
  • [47] Class of exactly solvable SO(n) symmetric spin chains with matrix product ground states
    Tu, Hong-Hao
    Zhang, Guang-Ming
    Xiang, Tao
    PHYSICAL REVIEW B, 2008, 78 (09)
  • [48] EXACTLY SOLVABLE MODEL OF AMORPHOUS FERROMAGNETS
    BOBAK, A
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1981, 103 (01): : 101 - 105
  • [49] EXACTLY SOLVABLE MODEL FOR TRICRITICAL PHENOMENA
    EMERY, VJ
    PHYSICAL REVIEW B, 1975, 11 (09) : 3397 - 3405
  • [50] Exactly solvable model of nonlinear dynamo
    Vainshtein, SI
    PHYSICAL REVIEW LETTERS, 1998, 80 (22) : 4879 - 4882