Optimization of reactor geometry and growth conditions for GaN halide vapor phase epitaxy

被引:2
|
作者
Safvi, SA
Perkins, NR
Horton, MN
Thon, A
Zhi, D
Kuech, TF
机构
来源
III-NITRIDE, SIC AND DIAMOND MATERIALS FOR ELECTRONIC DEVICES | 1996年 / 423卷
关键词
D O I
10.1557/PROC-423-227
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A numerical model of an experimental gallium nitride horizontal vapor phase epitaxy reactor is presented. The model predicts the flow, concentration profiles, and growth rates. The effects of flowrate variation and geometry on the growth rate, growth uniformity and crystal quality were investigated. Numerical model predictions are compared to experimentally observed values. Parasitic gas phase reactions between group III and group V sources and deposition of material on the wall are shown to lead to reduced overall growth rates and inferior crystal quality. A low ammonia concentration is correlated to deposition of polycrystalline films. An optimum HVPE growth process requires selection of reactor geometry and operating conditions to minimize parasitic reactions and wall deposition while providing a uniform reactant distribution across the substrate.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条
  • [31] Growth and doping of bulk GaN by hydride vapor phase epitaxy
    Zhang, Yu-Min
    Wang, Jian-Feng
    Cai, De-Min
    Ren, Guo-Qiang
    Xu, Yu
    Wang, Ming-Yue
    Hu, Xiao-Jian
    Xu, Ke
    CHINESE PHYSICS B, 2020, 29 (02)
  • [32] Growth of GaN nanorods by a hydride vapor phase epitaxy method
    Kim, HM
    Kim, DS
    Park, YS
    Kim, DY
    Kang, TW
    Chung, KS
    ADVANCED MATERIALS, 2002, 14 (13-14) : 991 - +
  • [33] Homoepitaxial growth of GaN by metalorganic vapor phase epitaxy: A benchmark for GaN technology
    Kirchner, C
    Schwegler, V
    Eberhard, F
    Kamp, M
    Ebeling, KJ
    Kornitzer, K
    Ebner, T
    Thonke, K
    Sauer, R
    Prystawko, P
    Leszczynski, M
    Grzegory, I
    Porowski, S
    APPLIED PHYSICS LETTERS, 1999, 75 (08) : 1098 - 1100
  • [34] Comparative optical characterization of GaN grown by metal-organic vapor phase epitaxy, gas source molecular beam epitaxy and halide vapor phase epitaxy
    Leroux, M.
    Beaumont, B.
    Grandjean, N.
    Golivet, C.
    Gibart, P.
    Massies, J.
    Leymarie, J.
    Vasson, A.
    Vasson, A.M.
    Materials science & engineering. B, Solid-state materials for advanced technology, 1997, B43 (1-3): : 237 - 241
  • [35] Comparative optical characterization of GaN grown by metal-organic vapor phase epitaxy, gas source molecular beam epitaxy and halide vapor phase epitaxy
    Leroux, M
    Beaumont, B
    Grandjean, N
    Golivet, C
    Gibart, P
    Massies, J
    Leymarie, J
    Vasson, A
    Vasson, AM
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 43 (1-3): : 237 - 241
  • [36] Gallium antimonide phosphide growth using Halide Vapor Phase Epitaxy
    Calero-Barney, S. J.
    Paxton, W.
    Ortiz, P.
    Sunkara, M. K.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 209
  • [37] Investigation of deep levels in bulk GaN material grown by halide vapor phase epitaxy
    Tran Thien Duc
    Pozina, Galia
    Janzen, Erik
    Hemmingsson, Carl
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (15)
  • [38] Incorporation of Er into GaN by in-situ doping during halide vapor phase epitaxy
    Zhang, R
    Kuech, TF
    WIDE-BANDGAP SEMICONDUCTORS FOR HIGH POWER, HIGH FREQUENCY AND HIGH TEMPERATURE, 1998, 512 : 327 - 332
  • [39] Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy
    Tran Thien Duc
    Pozina, Galia
    Nguyen Tien Son
    Janzen, Erik
    Ohshima, Takeshi
    Hemmingsson, Carl
    APPLIED PHYSICS LETTERS, 2014, 105 (10)
  • [40] Reuse of ScAlMgO4 substrates utilized for halide vapor phase epitaxy of GaN
    Ohnishi, Kazuki
    Kuboya, Shigeyuki
    Tanikawa, Tomoyuki
    Iwabuchi, Takuya
    Yamamura, Kazuya
    Hasuike, Noriyuki
    Harima, Hiroshi
    Fukuda, Tsuguo
    Matsuoka, Takashi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (SC)