Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries

被引:53
|
作者
Chen, Chang [1 ,2 ,3 ]
Ru, Qiang [1 ,2 ,3 ]
Hu, Shejun [1 ,2 ,3 ]
An, Bonan [1 ,2 ,3 ]
Song, Xiong [1 ,2 ,3 ]
Hou, Xianhua [1 ,2 ,3 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Minist Educ, Engn Res Ctr Mat & Technol Elect Energy Storage, Guangzhou 510006, Guangdong, Peoples R China
[3] S China Normal Univ, Lab Quantum Engn & Quantum Mat, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Co2SnO4; Graphene sheets; Nanocomposites; Lithium-ion batteries; REVERSIBLE ANODE MATERIAL; HIGH-CAPACITY; SURFACE NANOCRYSTALLIZATION; ELECTROCHEMICAL PROPERTIES; OXIDE; CARBON; COMPOSITE; STORAGE; NANOPARTICLES; NANOTUBES;
D O I
10.1016/j.electacta.2014.11.018
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Cubic spinel Co2SnO4/graphene sheets (Co2SnO4/G) nanocomposites are synthesized by a facile hydrothermal process in alkaline solution, using SnCl4 center dot 4H(2)O, CoCl2 center dot 6H(2)O and graphene oxide (GO) as the precursor. The structure and morphology of the resulting nanocomposites are characterized with Xray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Co2SnO4 nanoparticles are uniformly dispersed among graphene sheets, with a size of 80-150 nm. As anode material for lithium-ion batteries, the galvanostatic charge/discharge and cyclic voltammetry are conducted to indicate the electrochemical performance of Co2SnO4/G nanocomposites. Co2SnO4/G nanocomposites exhibit an improved electrochemical performance compared with pure Co2SnO4 nanoparticles, such as high reversible capacities, good cycling stability and excellent rate performance. The initial charge and discharge capacities are 996.1 mAh g(-1) and 1424.8 mAh g(-1). After 100 cycles, the reversible charge/discharge capacities still remain 1046/1061.1 mAh g(-1) at the current density of 100 mA g(-1). Co2SnO4 nanoparticles coated by Graphene sheets with superior electrochemical performance indicate that Co2SnO4/G nanocomposites are promising electrode materials used for high-storage lithium-ion batteries. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条
  • [21] Synthetically Controlled, Carbon-Coated Co2SnO4/SnO2 Composite Anode for Lithium-ion Batteries
    Mullaivananathan, V.
    Saravanan, K. R.
    Kalaiselvi, N.
    JOM, 2017, 69 (09) : 1497 - 1502
  • [22] Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries
    Zhang, Yanjun
    Jiang, Li
    Wang, Chunru
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (31) : 20061 - 20065
  • [23] LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries
    Lin, Binghui
    Yin, Qing
    Hu, Hengrun
    Lu, Fujia
    Xia, Hui
    JOURNAL OF SOLID STATE CHEMISTRY, 2014, 209 : 23 - 28
  • [24] Onion-like crystalline WS2 nanoparticles anchored on graphene sheets as high-performance anode materials for lithium-ion batteries
    Kim, Inha
    Park, Sung-Woo
    Kim, Dong-Wan
    CHEMICAL ENGINEERING JOURNAL, 2019, 375
  • [25] A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries
    Cai, Daoping
    Yang, Ting
    Liu, Bin
    Wang, Dandan
    Liu, Yuan
    Wang, Lingling
    Li, Qiuhong
    Wang, Taihong
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (34) : 13990 - 13995
  • [26] Synthetically Controlled, Carbon-Coated Co2SnO4/SnO2 Composite Anode for Lithium-ion Batteries
    V. Mullaivananathan
    KR. Saravanan
    N. Kalaiselvi
    JOM, 2017, 69 : 1497 - 1502
  • [27] Orthogonal Nb2O5 anchored on graphene as a high-performance anode for lithium-ion batteries
    Sheng, Yun
    Zhang, Xueqian
    Zhang, Xuji
    Zhou, Lijuan
    Wen, Guangwu
    Wang, Yishan
    VACUUM, 2025, 233
  • [28] Binding SnO2 Nanocrystals in Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries
    Zhou, Xiaosi
    Wan, Li-Jun
    Guo, Yu-Guo
    ADVANCED MATERIALS, 2013, 25 (15) : 2152 - 2157
  • [29] SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage
    Zhou, Wei
    Wang, Jinxian
    Zhang, Feifei
    Liu, Shumin
    Wang, Jianwei
    Yina, Dongming
    Wang, Limin
    CHEMICAL COMMUNICATIONS, 2015, 51 (17) : 3660 - 3662
  • [30] N-Doped Graphene-SnO2 Sandwich Paper for High-Performance Lithium-Ion Batteries
    Wang, Xi
    Cao, Xinqiang
    Bourgeois, Laure
    Guan, Hasigaowa
    Chen, Shimou
    Zhong, Yeteng
    Tang, Dai-Ming
    Li, Huiqiao
    Zhai, Tianyou
    Li, Liang
    Bando, Yoshio
    Golberg, Dmitri
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (13) : 2682 - 2690