Research Advances in Polyanion-Type Cathodes for Sodium-Ion Batteries

被引:38
|
作者
Pan, Wenli [1 ]
Guan, Wenhao [1 ]
Jiang, Yinzhu [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion battery; Polyanion-type cathode; High rate capability; Ion diffusion; Electron transport; CARBON-COATED NA3V2(PO4)(3); LIFE-SPAN CATHODE; ELECTRODE MATERIALS; LOW-COST; ENERGY-STORAGE; ELECTROCHEMICAL PROPERTIES; LITHIUM INTERCALATION; INSERTION COMPOUND; OLIVINE NAFEPO4; HIGH-CAPACITY;
D O I
10.3866/PKU.WHXB201905017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Because of their high energy density and long cycle life, lithium-ion batteries (LIBs) have dominated the portable electronics market for over 20 years. However, with the increasing demand for large-scale energy storage systems for grid applications, the price of Li resources has increased owing to the low abundance of Li in Earth's crust and non-uniform distribution on the planet. Because Na has similar physical and chemical properties as Li and is an abundant natural resource, room-temperature sodium-ion batteries (SIBs) are expected to be among the most promising next-generation large grid energy storage devices. It is known that the cathode, anode, separator and electrolyte materials are the main components of batteries. Among these, Na-containing cathode materials are of critical importance. As a cathode material for SIBs, polyanion-type compounds have become a hot research topic owing to their versatile structural frameworks, high thermal stabilities, high ambient stabilities even in the charging state, small volume changes, tunable operating voltage by tuning the chemical environment of the polyanions, and high operating voltages owing to the inductive effects of the polyanionic groups (PO43-,SO42-, SiO44- etc.). In particular, for Earth's abundant resources and inherent stability, polyanion-based compounds are suitable for large-scale stationary energy storage. Taking grid balancing into account, batteries with fast charge rates are in demand, which requires cathodes having high rate capability. However, despite the presence of ion diffusion channels in polyanion compounds, the electronic transport channels are blocked owing to the separation of the metal polyhedral and the strong electronegativity of the anions, leading to poor electron conductivity, which largely limits the rate capability of polyanion compounds. Therefore, it is crucial to understand the inherent limitation of the kinetics in terms of the structural aspects and to determine strategies for improving the rate capability. This review discusses the intrinsic reasons for the factors impacting ion diffusion based on the different structures of polyanion-type cathodes. From the perspectives of surface modification and morphology, strategies for enhancing the transport of sodium ions and electrons at the surface and interface are summarized and discussed. Then, from the standpoint of the hierarchical structures of materials to the design of a structural framework, which have been rarely reported, this review proposes schemes that intrinsically enhance the rate capability of polyanion compounds and provides a perspective on developments that can further improve the rate capability of cathode materials. This review provides suggestions for designing and optimizing high-rate polyanion-type and other kinds of cathodes from both academic and practical viewpoints.
引用
收藏
页数:12
相关论文
共 83 条
  • [11] Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries
    Barpanda, Prabeer
    Ye, Tian
    Nishimura, Shin-ichi
    Chung, Sai-Cheong
    Yamada, Yuki
    Okubo, Masashi
    Zhou, Haoshen
    Yamada, Atsuo
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2012, 24 : 116 - 119
  • [12] Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4
    Casas-Cabanas, Montse
    Roddatis, Vladimir V.
    Saurel, Damien
    Kubiak, Pierre
    Carretero-Gonzalez, Javier
    Palomares, Veronica
    Serras, Paula
    Rojo, Teofilo
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) : 17421 - 17423
  • [13] Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte
    Chen, Chih-Yao
    Matsumoto, Kazuhiko
    Nohira, Toshiyuki
    Hagiwara, Rika
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2014, 45 : 63 - 66
  • [14] Enhanced light absorption of textured perovskite solar cells employing two-dimensional nanoarrays
    Chen, Ming
    Wang, Ying
    Zhang, Ye
    [J]. JOURNAL OF PHOTONICS FOR ENERGY, 2019, 9 (03)
  • [15] NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density
    Chen, Mingzhe
    Hua, Weibo
    Xiao, Jin
    Cortiel, David
    Chen, Weihua
    Wang, Enhui
    Hu, Zhe
    Gu, Qinfen
    Wang, Xiaolin
    Indris, Sylvio
    Chou, Shu-Lei
    Dou, Shi-Xue
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [16] Kinetic analysis of the Li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films
    Das, SR
    Majumder, SB
    Katiyar, RS
    [J]. JOURNAL OF POWER SOURCES, 2005, 139 (1-2) : 261 - 268
  • [17] Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT
    Deiss, E
    [J]. ELECTROCHIMICA ACTA, 2005, 50 (14) : 2927 - 2932
  • [18] Graphene quantum dots-shielded Na-3(VO)(2)(PO4)(2)F@C nanocuboids as robust cathode for Na-ion battery
    Deng, Gang
    Chao, Dongliang
    Guo, Yuwei
    Chen, Zhen
    Wang, Huanhuan
    Savilov, Serguei V.
    Lin, Jianyi
    Shen, Ze Xiang
    [J]. ENERGY STORAGE MATERIALS, 2016, 5 : 198 - 204
  • [19] Ionothermal Synthesis of High-Voltage Alluaudite Na2+2xFe2-x(SO4)3 Sodium Insertion Compound: Structural, Electronic, and Magnetic Insights
    Dwibedi, Debasmita
    Ling, Chris D.
    Araujo, Rafael B.
    Chakraborty, Sudip
    Duraisamy, Shanmughasundaram
    Munichandraiah, Nookala
    Ahuja, Rajeev
    Barpanda, Prabeer
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (11) : 6982 - 6991
  • [20] Sodium and sodium-ion energy storage batteries
    Ellis, Brian L.
    Nazar, Linda F.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04): : 168 - 177