Deep-learning-based seizure detection and prediction from electroencephalography signals

被引:15
|
作者
Ibrahim, Fatma E. [1 ]
Emara, Heba M. [1 ]
El-Shafai, Walid [1 ,2 ]
Elwekeil, Mohamed [1 ,3 ]
Rihan, Mohamed [1 ,3 ]
Eldokany, Ibrahim M. [1 ]
Taha, Taha E. [1 ]
El-Fishawy, Adel S. [1 ]
El-Rabaie, El-Sayed M. [1 ]
Abdellatef, Essam [4 ]
Abd El-Samie, Fathi E. [1 ,5 ]
机构
[1] Menoufia Univ, Fac Elect Engn, Dept Elect & Elect Commun Engn, Menoufia 32952, Egypt
[2] Prince Sultan Univ, Comp Sci Dept, Secur Engn Lab, Riyadh, Saudi Arabia
[3] Univ Cassino & Southern Lazio, Dept Elect & Informat Engn DIEI, I-03043 Cassino, Italy
[4] Delta Higher Inst Engn & Technol DHIET, Mansoura, Egypt
[5] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, Riyadh, Saudi Arabia
关键词
Convolutional Neural Network (CNN); electroencephalography; epilepsy; Phase Space Reconstruction (PSR); seizure prediction; spectrogram; EEG SIGNALS; EPILEPTIC SEIZURES;
D O I
10.1002/cnm.3573
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electroencephalography (EEG) is among the main tools used for analyzing and diagnosing epilepsy. The manual analysis of EEG must be conducted by highly trained clinicians or neuro-physiologists; a process that is considered to have a comparatively low inter-rater agreement. Furthermore, the new data interpretation consumes an excessive amount of time and resources. Hence, an automatic seizure detection and prediction system can improve the quality of patient care in terms of shortening the diagnosis period, reducing manual errors, and automatically detecting debilitating events. Moreover, for patient treatment, it is important to alert the patients of epilepsy seizures prior to seizure occurrence. Various distinguished studies presented good solutions for two-class seizure detection problems with binary classification scenarios. To deal with these challenges, this paper puts forward effective approaches for EEG signal classification for normal, pre-ictal, and ictal activities. Three models are presented for the classification task. Two of them are patient-specific, while the third one is patient non-specific, which makes it better for the general classification tasks. The two-class classification is implemented between normal and pre-ictal activities for seizure prediction and between normal and ictal activities for seizure detection. A more generalized three-class classification framework is considered to identify all EEG signal activities. The first model depends on a Convolutional Neural Network (CNN) with residual blocks. It contains thirteen layers with four residual learning blocks. It works on spectrograms of EEG signal segments. The second model depends on a CNN with three layers. It also works on spectrograms. On the other hand, the third model depends on Phase Space Reconstruction (PSR) to eliminate the limitations of the spectrograms used in the first models. A five-layer CNN is used with this strategy. The advantage of the PSR is the direct projection from the time domain, which keeps the main trend of different signal activities. The third model deals with all signal activities, and it was tested for all patients of the CHB-MIT dataset. It has a superior performance compared to the first models and the state-of-the-art models.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Non-electroencephalography-based seizure detection
    Beniczky, Sandor
    Jeppesen, Jesper
    CURRENT OPINION IN NEUROLOGY, 2019, 32 (02) : 198 - 204
  • [42] A Deep-Learning-Based Approach for Aircraft Engine Defect Detection
    Upadhyay, Anurag
    Li, Jun
    King, Steve
    Addepalli, Sri
    MACHINES, 2023, 11 (02)
  • [43] Annotated dataset for deep-learning-based bacterial colony detection
    Makrai, Laszlo
    Fodroczy, Bettina
    Nagy, Sara Agnes
    Czeiszing, Peter
    Csabai, Istvan
    Szita, Geza
    Solymosi, Norbert
    SCIENTIFIC DATA, 2023, 10 (01)
  • [44] Deep-Learning-Based Approach for IoT Attack and Malware Detection
    Tasci, Burak
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [45] Deep-Learning-Based Thickness Detection Method of Ice Covering
    Pi, Xinyu
    Zhang, Guoyong
    He, Lifu
    Feng, Wenqing
    Luo, Jing
    Ouyang, Yi
    2021 11TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2021), 2021, : 526 - 530
  • [46] A cascaded deep-learning-based model for face mask detection
    Kumar, Akhil
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 57 (01) : 84 - 107
  • [47] Deep-Learning-Based Bughole Detection for Concrete Surface Image
    Yao, Gang
    Wei, Fujia
    Yang, Yang
    Sun, Yujia
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [48] A cascaded deep-learning-based model for face mask detection
    Kumar, Akhil
    DATA TECHNOLOGIES AND APPLICATIONS, 2022, : 1 - 24
  • [49] Annotated dataset for deep-learning-based bacterial colony detection
    László Makrai
    Bettina Fodróczy
    Sára Ágnes Nagy
    Péter Czeiszing
    István Csabai
    Géza Szita
    Norbert Solymosi
    Scientific Data, 10
  • [50] A Systematic Review on Deep-Learning-Based Phishing Email Detection
    Gray, L. Earl
    Conley, Justin M.
    Bursian, Steven J.
    Kamruzzaman, Abu
    Asif, Rameez
    ELECTRONICS, 2023, 12 (21)