Capillary grip-induced stick-slip motion

被引:4
|
作者
An, Sangmin [1 ,2 ]
Lee, Manhee [3 ]
Kim, Bongsu [1 ,4 ]
Jhe, Wonho [1 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[2] Jeonbuk Natl Univ, Inst Photonies & Informat Technol, Dept Phys, Jeonju 54896, South Korea
[3] Chungbuk Natl Univ, Dept Phys, Cheongju 28644, Chungbuk, South Korea
[4] Samsung Elect, Samsung Adv Inst Technol SAIT, Suwon 16678, South Korea
基金
新加坡国家研究基金会;
关键词
dynamic force measurement; nanoscale water meniscus; relative humidity; lateral force; stick-slip motion; FRICTION; FORCE; ADHESION; SURFACE; ORIGIN;
D O I
10.1007/s12274-022-4348-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present capillary grip-induced stick-slip motion, a nanoscale tribological effect, where the role of a nanoscale confined water meniscus formed between a buckled sharp tip and a glass or mica surface is addressed by shear dynamic force measurement. We obtained the effective elasticity, viscosity, conservative (elastic) and non-conservative (viscous) forces, energy dissipation, and lateral force using small oscillation, amplitude-modulation, and shear-mode quartz tuning fork-atomic force microscopy (QTF-AFM). We distinguished the conservative and non-conservative forces by investigating the dependence of normal load and relative humidity, slip length, and stick-slip frequency. We found that the confined nanoscale water enhances the lateral forces via capillary grip-induced stick-slip on a rough surface, resulting in an increase of static lateral force (3-fold for both substrates) and kinetic lateral force (6-fold for glass, 3-fold for mica). This work provides quantitative and systematic understanding of nanoscale tribology properties in humid ambient conditions and is thus useful for control of friction as well as characterization of tribology in nanomaterials and nanodevices.
引用
收藏
页码:7384 / 7391
页数:8
相关论文
共 50 条
  • [31] STICK-SLIP MOTION DURING PEELING OF A VISCOELASTIC SOLID
    BARQUINS, M
    KHANDANI, B
    MAUGIS, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1986, 303 (17): : 1517 - 1519
  • [32] The influence of regularization methods on the integration of stick-slip motion
    Engleder, T
    Vielsack, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S187 - S188
  • [33] Entropy Content During Nanometric Stick-Slip Motion
    Creeger, Paul
    Zypman, Fredy
    ENTROPY, 2014, 16 (06): : 3062 - 3073
  • [34] STICK-SLIP MOTION OF MACHINE-TOOL SLIDEWAY
    KATO, S
    YAMAGUCH.K
    MATSUBAY.T
    MECHANICAL ENGINEERING, 1974, 96 (01) : 56 - 56
  • [35] Stick-slip motion and elastic coupling in crawling cells
    Loosley, Alex J.
    Tang, Jay X.
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [36] Stick-Slip Motion of the Wigner Solid on Liquid Helium
    Rees, David G.
    Beysengulov, Niyaz R.
    Lin, Juhn-Jong
    Kono, Kimitoshi
    PHYSICAL REVIEW LETTERS, 2016, 116 (20)
  • [37] Excitation of energy harvesters using stick-slip motion
    Helseth, L. E.
    SMART MATERIALS AND STRUCTURES, 2014, 23 (08)
  • [38] Nonlinear spring model for frictional stick-slip motion
    G. Djuidjé Kenmoé
    A. Kenfack Jiotsa
    T. C. Kofané
    The European Physical Journal B, 2009, 70 : 353 - 361
  • [39] Analytical modeling of the stick-slip motion of an oscillation drum
    Ivan Paulmichl
    Christoph Adam
    Dietmar Adam
    Acta Mechanica, 2019, 230 : 3103 - 3126
  • [40] Accelerated subglacial erosion in response to stick-slip motion
    Zoet, L. K.
    Alley, R. B.
    Anandakrishnan, S.
    Christianson, K.
    GEOLOGY, 2013, 41 (02) : 159 - 162