Explicit formulae for time-space Brownian chaos

被引:8
|
作者
Peccati, G [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris, France
[2] Univ L Bocconi, Ist Metodi Quantitat, I-20136 Milan, Italy
关键词
Brownian bridge; Brownian motion; Clark-Ocone formula; enlargement of filtrations; Hardy operators; static hedging; Stroock's formula; time-space chaos;
D O I
10.3150/bj/1068129009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F be a square-integrable and infinitely weakly differentiable functional of a standard Brownian motion X: we show that the nth integrand in the time-space chaotic decomposition of F has the form E(alpha((n))D(n)F\X-t1,...,X-tn), where alpha((n)) is a transform of Hardy type and D-n denotes the nth derivative operator. In this way, we complete the results of previous papers, and provide a time-space counterpart to the classic Stroock formulae for Wiener chaos. Our main tool is an extension of the Clark-Ocone formula in the context of initially enlarged filtrations. We discuss an application to the static hedging of path-dependent options in a continuous-time financial model driven by X. A formal connection between our results and the orthogonal decomposition of the space of square-integrable functionals of a standard Brownian bridge - as proved by Gosselin and Wurzbacher - is also established.
引用
收藏
页码:25 / 48
页数:24
相关论文
共 50 条
  • [21] Teaching Time-Space Compression
    Warf, Barney
    JOURNAL OF GEOGRAPHY IN HIGHER EDUCATION, 2011, 35 (02) : 143 - 161
  • [22] A study of time-space metaphor
    潘丽霞
    青春岁月, 2012, (16) : 56 - 56
  • [23] TIME-SPACE DISEASE CLUSTERING
    ROBERSON, PK
    FISHER, L
    BIOMETRICS, 1978, 34 (04) : 746 - 746
  • [24] An inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion
    Nie, Daxin
    Deng, Weihua
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (05): : 723 - 738
  • [25] Time-space scaling of financial time series
    Kumagai, Y
    EMPIRICAL SCIENCE OF FINANCIAL FLUCTUATIONS: THE ADVENT OF ECONOPHYSICS, 2002, : 250 - 259
  • [26] On explicit occupation time distributions for Brownian processes
    Hooghiemstra, G
    STATISTICS & PROBABILITY LETTERS, 2002, 56 (04) : 405 - 417
  • [27] Ovals of time: Time-space associations in synaesthesia
    Smilek, Daniel
    Callejas, Alicia
    Dixon, Mike J.
    Merikle, Philip M.
    CONSCIOUSNESS AND COGNITION, 2007, 16 (02) : 507 - 519
  • [28] ON THE DERIVATION OF EXPLICIT FORMULAE FOR SOLUTIONS OF THE WAVE EQUATION IN HYPERBOLIC SPACE
    Guseinov, Gusein Sh.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 395 - 409
  • [29] Chaos in space and time
    J. P. Gollub
    M. C. Cross
    Nature, 2000, 404 : 710 - 711
  • [30] Time-space tradeoffs for polynomial evaluation
    Aldaz, M
    Heintz, J
    Matera, G
    Montaña, JL
    Pardo, LM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (10): : 907 - 912