Explicit formulae for time-space Brownian chaos

被引:8
|
作者
Peccati, G [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris, France
[2] Univ L Bocconi, Ist Metodi Quantitat, I-20136 Milan, Italy
关键词
Brownian bridge; Brownian motion; Clark-Ocone formula; enlargement of filtrations; Hardy operators; static hedging; Stroock's formula; time-space chaos;
D O I
10.3150/bj/1068129009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F be a square-integrable and infinitely weakly differentiable functional of a standard Brownian motion X: we show that the nth integrand in the time-space chaotic decomposition of F has the form E(alpha((n))D(n)F\X-t1,...,X-tn), where alpha((n)) is a transform of Hardy type and D-n denotes the nth derivative operator. In this way, we complete the results of previous papers, and provide a time-space counterpart to the classic Stroock formulae for Wiener chaos. Our main tool is an extension of the Clark-Ocone formula in the context of initially enlarged filtrations. We discuss an application to the static hedging of path-dependent options in a continuous-time financial model driven by X. A formal connection between our results and the orthogonal decomposition of the space of square-integrable functionals of a standard Brownian bridge - as proved by Gosselin and Wurzbacher - is also established.
引用
收藏
页码:25 / 48
页数:24
相关论文
共 50 条
  • [1] A representation result for time-space Brownian chaos
    Peccati, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (05): : 607 - 625
  • [2] Anticipative stochastic integration based on time-space chaos
    Peccati, G
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 112 (02) : 331 - 355
  • [3] Time-Space Distanciation: An Interdisciplinary Account of How Culture Shapes the Implicit and Explicit Psychology of Time and Space
    Sullivan, Daniel
    Keefer, Lucas A.
    Stewart, Sheridan A.
    Palitsky, Roman
    JOURNAL FOR THE THEORY OF SOCIAL BEHAVIOUR, 2016, 46 (04) : 450 - 474
  • [4] RELATIVIZING TIME, SPACE, AND TIME-SPACE
    BOOK, RV
    WILSON, CB
    XU, MR
    SIAM JOURNAL ON COMPUTING, 1982, 11 (03) : 571 - 581
  • [5] Time-Space Decoupled Explicit Method for Fast Numerical Simulation of Tsunami Propagation
    Guo, Anxin
    Xiao, Shengchao
    Li, Hui
    PURE AND APPLIED GEOPHYSICS, 2015, 172 (02) : 569 - 587
  • [6] Concepts in the Direct Waveform Inversion (DWI) Using Explicit Time-Space Causality
    Zheng, Yingcai
    Liu, Zhonghan
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (01) : 342 - 355
  • [7] Subordinators related to the exponential functionals of brownian bridges and explicit formulae for the semigroups of hyperbolic brownian motions
    Matsumoto, H
    Nguyen, L
    Yor, M
    STOCHASTIC PROCESSES AND RELATED TOPICS, 2002, 12 : 213 - 235
  • [8] The time-space of craftsmanship
    Eriksson, Lars
    Seiler, Joakim
    Jarefjall, Patrik
    Almevik, Gunnar
    CRAFT RESEARCH, 2019, 10 (01) : 17 - 39
  • [9] Time-Space Fluctuations
    Miguel, Alcebiades Diniz
    ARQUIVO MAARAVI-REVISTA DIGITAL DE ESTUDOS JUDAICOS DA UFMG, 2013, 7 (13) : 3 - 16
  • [10] ECONOMIC TIME-SPACE
    HRUBY, P
    POLITICKA EKONOMIE, 1970, 18 (08) : 735 - 742