An in vitro method to evaluate hemolysis of human red blood cells (RBCs) treated by airborne particulate matter (PM10)

被引:54
|
作者
Mesdaghinia, Alireza [1 ,2 ]
Pourpak, Zahra [3 ]
Naddafi, Kazem [1 ,2 ]
Nodehi, Ramin Nabizadeh [1 ,2 ]
Alizadeh, Zahra [3 ]
Rezaei, Soheila [4 ]
Mohammadi, Amir [5 ]
Faraji, Maryam [6 ,7 ]
机构
[1] Univ Tehran Med Sci, Sch Publ Hlth, Dept Environm Hlth Engn, Tehran, Iran
[2] Univ Tehran Med Sci, IER, CAPR, Tehran, Iran
[3] Univ Tehran Med Sci, Immunol Asthma & Allergy Res Inst, Tehran, Iran
[4] Yasuj Univ Med Sci, Social Determinants Hlth Res Ctr, Yasuj, Iran
[5] Maragheh Univ Med Sci, Sch Nursing & Midwifery, Dept Publ Hlth, Maragheh, Iran
[6] Kerman Univ Med Sci, Environm Hlth Engn Res Ctr, Kerman, Iran
[7] Kerman Univ Med Sci, Sch Publ Hlth, Dept Environm Hlth, Kerman, Iran
基金
美国国家科学基金会;
关键词
Cyanmethemoglobin; Hemoglobine; Hemolysis percent; Air pollution; Dry extraction; In vitro test; ASTM standard E2524-08; Hemolytic samples; DNA METHYLATION;
D O I
10.1016/j.mex.2019.01.001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Air pollutants are capable to enter bloodstream through the nose, mouth, skin and the digestive tract. Hemolysis is the premature destruction of red blood cells (RBCs) membranes. This can affect metabolism of RBCs and reduce cell life. Each of these adverse effects could lead to anemia, jaundice and other pathological conditions. Hemolysis can induce by the mineral components adsorbed on the particles. The aim of this study was to evaluate hemolysis of RBCs treated by airborne PM10 (PM with aerodynamic diameter <= 10 mu m) in vitro. Study had two main stages including sampling and preparation of PM10 suspension, and hemolysis test. Particle samples were collected by means of a high-volume sampler on fiberglass filters. The PM10 was extracted through dry ultrasonic method. Blood sample was incubated by PM10 at concentrations 50-300 mu g/mL for 3 h. Hemolysis percent was assessed through measurement of Hemoglobin concentration in test samples and total blood hemoglobin (TBH) sample by the cyanmethemoglobin method. Analysis of variance (ANOVA) and Tukey post-hoc test were applied to compare mean values of hemolysis percent between different PM concentrations. Method used in current study is suggested for investigation of toxic effects of airborne particle matter (PM1, PM2.5 and PM10) on human RBCs. (C) 2019 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:156 / 161
页数:6
相关论文
共 50 条
  • [31] Characterization of soluble ions in PM10 fraction airborne particulate matter. Relations with rain water
    Blanco Heras, G.A.
    Piñeiro-Iglesias, M.
    Turnes Carou, I.
    Lopezmahia
    Muniategui, S.
    Prada, D.
    Journal of Aerosol Science, 2004, 35 : 687 - 720
  • [32] Particulate matter (PM10) induces metalloprotease activity and invasion in airway epithelial cells
    Morales-Barcenas, Rocio
    Chirino, Yolanda I.
    Sanchez-Perez, Yesennia
    Roman Osornio-Vargas, Alvaro
    Melendez-Zajgla, Jorge
    Rosas, Irma
    Maria Garcia-Cuellar, Claudia
    TOXICOLOGY LETTERS, 2015, 237 (03) : 167 - 173
  • [33] Characterization of soluble and insoluble components in PM2.5 and PM10 fractions of airborne particulate matter in Kofu city, Japan
    Kyotani, T
    Iwatsuki, M
    ATMOSPHERIC ENVIRONMENT, 2002, 36 (04) : 639 - 649
  • [34] Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999-2005
    Querol, X.
    Alastuey, A.
    Moreno, T.
    Viana, M. M.
    Castillo, S.
    Pey, J.
    Rodriguez, S.
    Artinano, B.
    Salvador, P.
    Sanchez, M.
    Dos Santos, S. Garcia
    Garraleta, M. D. Herce
    Fernandez-Patier, R.
    Moreno-Grau, S.
    Negral, L.
    Minguillon, M. C.
    Monfort, E.
    Sanz, M. J.
    Palomo-Marin, R.
    Pinilla-Gil, E.
    Cuevas, E.
    de la Rosa, J.
    de la Campa, A. Sanchez
    ATMOSPHERIC ENVIRONMENT, 2008, 42 (17) : 3964 - 3979
  • [35] In Vitro Investigations of Platinum, Palladium, and Rhodium Mobility in Urban Airborne Particulate Matter (PM10, PM2.5, and PM1) Using Simulated Lung Fluids
    Zereini, Fathi
    Wiseman, Clare L. S.
    Puettmann, Wilhelm
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (18) : 10326 - 10333
  • [36] Geochemical properties of airborne particulate matter (PM10) collected by automatic device and biomonitors in a Mediterranean urban environment
    Adamo, P.
    Giordano, S.
    Naimo, D.
    Bargagli, R.
    ATMOSPHERIC ENVIRONMENT, 2008, 42 (02) : 346 - 357
  • [37] Nucleotide Excision Repair Pathway Activity Is Inhibited by Airborne Particulate Matter (PM10) through XPA Deregulation in Lung Epithelial Cells
    Quezada-Maldonado, Ericka Marel
    Chirino, Yolanda I.
    Gonsebatt, Maria Eugenia
    Morales-Barcenas, Rocio
    Sanchez-Perez, Yesennia
    Garcia-Cuellar, Claudia M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
  • [38] PAH in airborne particulate matter. Carcinogenic character of PM10 samples and assessment of the energy generation impact
    Callen, M. S.
    de la Cruz, M. T.
    Lopez, J. M.
    Mastral, A. M.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (02) : 176 - 182
  • [39] Mutagenicity monitoring of airborne particulate matter (PM10) in the Czech Republic (vol 444, pg 373, 1999)
    Cerná, M
    Pastorková, A
    Vrbíková, V
    Smíd, J
    Rössner, P
    MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 2000, 464 (02) : 309 - 310
  • [40] Mutagenic activity of airborne particulate matter (PM10) in a sugarcane farming area (Araraquara city, southeast Brazil)
    de Andrade, Sandro Jose
    Varella, Soraya Duarte
    Pereira, Gener Tadeu
    Zocolo, Guilherme Juliao
    Rodrigues de Marchi, Mary Rosa
    Varanda, Eliana Aparecida
    ENVIRONMENTAL RESEARCH, 2011, 111 (04) : 545 - 550