Optimal Frequency Reuse and Power Control in Multi-UAV Wireless Networks: Hierarchical Multi-Agent Reinforcement Learning Perspective

被引:8
|
作者
Lee, Seungmin [1 ,2 ]
Lim, Suhyeon [1 ,2 ]
Chae, Seong Ho [3 ]
Jung, Bang Chul [4 ]
Park, Chan Yi [5 ]
Lee, Howon [1 ,2 ]
机构
[1] Hankyong Natl Univ, Sch Elect & Elect Engn, Anseong 17579, South Korea
[2] Hankyong Natl Univ, Inst IT Convergence IITC, Anseong 17579, South Korea
[3] Tech Univ Korea, Dept Elect Engn, Siheung Si 15073, South Korea
[4] Chungnam Natl Univ, Dept Elect Engn, Daejeon 34134, South Korea
[5] Agcy Def Dev, Daejeon 34186, South Korea
关键词
Frequency conversion; Computer architecture; Time-frequency analysis; Microprocessors; Wireless networks; Q-learning; Autonomous aerial vehicles; Unmanned aerial vehicle; optimal frequency reuse; transmit power control; energy efficiency; hierarchical multi-agent Q-learning; multi-UAV wireless network; COVERAGE; ACCESS;
D O I
10.1109/ACCESS.2022.3166179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To overcome the problems caused by the limited battery lifetime in multiple-unmanned aerial vehicle (UAV) wireless networks, we propose a hierarchical multi-agent reinforcement learning (RL) framework to maximize the energy efficiency (EE) of UAVs by finding the optimal frequency reuse factor and transmit power. The proposed algorithm consists of distributed inner-loop RL for transmit power control of the UAV terminal (UT) and centralized outer-loop RL for finding the optimal frequency reuse factor. Specifically, the proposed algorithm adjusts these two factors jointly to effectively mitigate intercell interference and reduce undesired transmit power consumption in multi-UAV wireless networks. We show that, for this reason, the proposed algorithm outperforms conventional algorithms, such as a random action algorithm with a fixed frequency reuse factor and a hierarchical multi-agent Q-learning algorithm with binary transmit power controls. Furthermore, even in the environment where UTs are continuously moving based on the mixed mobility model, we show that the proposed algorithm can find the best reward when compared to conventional algorithms.
引用
收藏
页码:39555 / 39565
页数:11
相关论文
共 50 条
  • [31] Cooperative Multi-UAV Positioning for Aerial Internet Service Management: A Multi-Agent Deep Reinforcement Learning Approach
    Kim, Joongheon
    Park, Soohyun
    Jung, Soyi
    Cordeiro, Carlos
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04): : 3797 - 3812
  • [32] Orchestrated Scheduling and Multi-Agent Deep Reinforcement Learning for Cloud-Assisted Multi-UAV Charging Systems
    Jung, Soyi
    Yun, Won Joon
    Shin, MyungJae
    Kim, Joongheon
    Kim, Jae-Hyun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (06) : 5362 - 5377
  • [33] Multi-UAV Trajectory Design and Power Control Based on Deep Reinforcement Learning
    Zhang C.Y.
    Liang S.Y.
    He C.L.
    Wang K.Z.
    Journal of Communications and Information Networks, 2022, 7 (02): : 192 - 201
  • [34] Multi-UAV Redeployment Optimization Based on Multi-Agent Deep Reinforcement Learning Oriented to Swarm Performance Restoration
    Wu, Qilong
    Geng, Zitao
    Ren, Yi
    Feng, Qiang
    Zhong, Jilong
    SENSORS, 2023, 23 (23)
  • [35] Joint optimization of communication and mission performance for multi-UAV collaboration network: A multi-agent reinforcement learning method
    He, Yuan
    Xie, Jun
    Hu, Guyu
    Liu, Yaqun
    Luo, Xijian
    AD HOC NETWORKS, 2024, 164
  • [36] Joint Trajectory Control, Frequency Allocation, and Routing for UAV Swarm Networks: A Multi-Agent Deep Reinforcement Learning Approach
    Alam, Muhammad Morshed
    Moh, Sangman
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 11989 - 12005
  • [37] Multi-Agent Deep Reinforcement Learning for Joint Decoupled User Association and Trajectory Design in Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 6056 - 6070
  • [38] Dynamic Channel Access and Power Control in Wireless Interference Networks via Multi-Agent Deep Reinforcement Learning
    Lu, Ziyang
    Zhong, Chen
    Gursoy, M. Cenk
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 1588 - 1601
  • [39] Multi-Agent Reinforcement Learning for Wireless Networks Against Adversarial Communications
    Lv, Zefang
    Chen, Yifan
    Xiao, Liang
    Yang, Helin
    Ji, Xiangyang
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 3409 - 3414
  • [40] Online Multi-Agent Reinforcement Learning for Multiple Access in Wireless Networks
    Xiao, Jianbin
    Chen, Zhenyu
    Sun, Xinghua
    Zhan, Wen
    Wang, Xijun
    Chen, Xiang
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (12) : 3250 - 3254