A Conditional Generative Adversarial Network for Non-rigid Point Set Registration

被引:1
|
作者
Tang, Haolin [1 ]
Zhao, Yanxiao [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA
关键词
Non-rigid; Point set registration; Autoencoder; Generative adversarial network; TRANSFORMATION;
D O I
10.1109/CSDE53843.2021.9718461
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel approach to perform non-rigid point set registration without an iterative process. The main idea is to design a conditional generative adversarial network, termed Point Registration Generative Adversarial Network (PR-GAN). The proposed PR-GAN establishes an adversarial game between a generator and a discriminator. The generator aims to generate the geometric transformation parameters, and the discriminator aims to force the generated parameters to register two point sets accurately. After effective training, PRGAN can generate the desired transformation parameters to register a never-seen-before point set pair without an iterative optimization process. Furthermore, we design a pre-trained autoencoder to represent the point sets before feeding to PRGAN. Experiments with deformation, noise, and outlier are conducted. Results exhibit that PR-GAN achieves remarkably better performance compared to traditional iterative solutions.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] An Improved Non-Rigid Point Set Registration Algorithm by Preserving Local Topology
    Sang, Qiang
    Huang, Tao
    Tang, Huihuang
    Jiang, Ping
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (04) : 646 - 655
  • [22] Robust non-rigid point set registration via building tree dynamically
    Shaoyi Du
    Bo Bi
    Guanglin Xu
    Jihua Zhu
    Xuetao Zhang
    Multimedia Tools and Applications, 2017, 76 : 12065 - 12081
  • [23] Non-Rigid Point Set Registration Based Masticatory Muscle Deformation Measurement
    Yang, Yang
    Hu, Yifan
    Gao, Xueyan
    Yang, Kun
    Foong, Kelvin Weng Chiong
    Takada, Kenji
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (04) : 820 - 827
  • [24] An Improved Non-Rigid Point Set Registration Algorithm by Preserving Local Topology
    Tao Qiang Sang
    Huihuang Huang
    Ping Tang
    Pattern Recognition and Image Analysis, 2021, 31 : 646 - 655
  • [25] Context-Aware Gaussian Fields for Non-rigid Point Set Registration
    Wang, Gang
    Wang, Zhicheng
    Chen, Yufei
    Zhou, Qiangqiang
    Zhao, Weidong
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5811 - 5819
  • [26] Non-rigid Point Set Registration with Global-Local Topology Preservation
    Ge, Song
    Fan, Guoliang
    Ding, Meng
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 245 - 251
  • [27] NON-RIGID MULTIPLE POINT SET REGISTRATION USING LATENT GAUSSIAN MIXTURE
    Huang, Hao
    Chen, Cheng
    Fang, Yi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3181 - 3185
  • [28] Non-rigid point set registration based on local neighborhood information support
    Liu, Chuanju
    Niu, Dongmei
    Wang, Peng
    Zhao, Xiuyang
    Yang, Bo
    Zhang, Caiming
    PATTERN RECOGNITION, 2022, 132
  • [29] Linewise Non-Rigid Point Cloud Registration
    Castillon, Miguel
    Ridao, Pere
    Siegwart, Roland
    Cadena, Cesar
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03): : 7044 - 7051
  • [30] Robust Non-Rigid Point Set Registration Using Spatially Constrained Gaussian Fields
    Wang, Gang
    Zhou, Qiangqiang
    Chen, Yufei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 1759 - 1769