A Conditional Generative Adversarial Network for Non-rigid Point Set Registration

被引:1
|
作者
Tang, Haolin [1 ]
Zhao, Yanxiao [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA
关键词
Non-rigid; Point set registration; Autoencoder; Generative adversarial network; TRANSFORMATION;
D O I
10.1109/CSDE53843.2021.9718461
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel approach to perform non-rigid point set registration without an iterative process. The main idea is to design a conditional generative adversarial network, termed Point Registration Generative Adversarial Network (PR-GAN). The proposed PR-GAN establishes an adversarial game between a generator and a discriminator. The generator aims to generate the geometric transformation parameters, and the discriminator aims to force the generated parameters to register two point sets accurately. After effective training, PRGAN can generate the desired transformation parameters to register a never-seen-before point set pair without an iterative optimization process. Furthermore, we design a pre-trained autoencoder to represent the point sets before feeding to PRGAN. Experiments with deformation, noise, and outlier are conducted. Results exhibit that PR-GAN achieves remarkably better performance compared to traditional iterative solutions.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] NON-RIGID POINT SET REGISTRATION: A BIDIRECTIONAL APPROACH
    Sang, Qiang
    Zhang, Jianzhou
    Yu, Zeyun
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 693 - 696
  • [2] NON-RIGID POINT SET REGISTRATION WITH MULTIPLE FEATURES
    Tang, HaoLin
    Yang, Yang
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 268 - 273
  • [3] Non-rigid point set registration: recent trends and challenges
    Yuan, Xiaohui
    Maharjan, Amar
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (06) : 4859 - 4891
  • [4] NRGA Gravitational Approach for Non-Rigid Point Set Registration
    Ali, Sk Aziz
    Golyanik, Vladislav
    Stricker, Didier
    2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 756 - 765
  • [5] Non-rigid point set registration: recent trends and challenges
    Xiaohui Yuan
    Amar Maharjan
    Artificial Intelligence Review, 2023, 56 : 4859 - 4891
  • [6] Non-rigid point set registration via global and local constraints
    Yang, Changcai
    Zhang, Meifang
    Zhang, Zejun
    Wei, Lifang
    Chen, Riqing
    Zhou, Huabing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (24) : 31607 - 31625
  • [7] Non-rigid point set registration using color and data downsampling
    Saval-Calvo, Marcelo
    Orts-Escolano, Sergio
    Azorin-Lopez, Jorge
    Garcia-Rodriguez, Jose
    Fuster-Guillo, Andres
    Morell-Gimenez, Vicente
    Cazorla, Miguel
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [8] Robust Non-rigid Point Set Registration based on Dynamic Tree
    Qu, Di
    Du, Shaoyi
    Liu, Juan
    Wang, Yike
    Xue, Jianru
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 707 - 711
  • [9] Non-Rigid Point Set Registration by Preserving Global and Local Structures
    Ma, Jiayi
    Zhao, Ji
    Yuille, Alan L.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (01) : 53 - 64
  • [10] Non-rigid point set registration via coherent spatial mapping
    Chen, Jun
    Ma, Jiayi
    Yang, Changcai
    Ma, Li
    Zheng, Sheng
    SIGNAL PROCESSING, 2015, 106 : 62 - 72