Deformation theory and finite simple quotients of triangle groups II

被引:7
|
作者
Larsen, Michael [1 ]
Lubotzky, Alexander [2 ]
Marion, Claude [2 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
基金
美国国家科学基金会;
关键词
Triangle groups; representation varieties; finite simple groups; ALGEBRAIC-GROUPS; ELEMENTS; LIE;
D O I
10.4171/GGD/249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a continuation of our first paper [10] in which we showed how deformation theory of representation varieties can be used to study finite simple quotients of triangle groups. While in Part I, we mainly used deformations of the principal homomorphism from SO(3, R), in this part we use PGL(2)(R) as well as deformations of representations which are very different from the principal homomorphism.
引用
收藏
页码:811 / 836
页数:26
相关论文
共 50 条
  • [11] Finite quotients of braid groups
    Alice Chudnovsky
    Kevin Kordek
    Qiao Li
    Caleb Partin
    Geometriae Dedicata, 2020, 207 : 409 - 416
  • [12] Finite quotients of ultraproducts of finite perfect groups
    Yang, Yilong
    JOURNAL OF ALGEBRA, 2023, 632 : 194 - 225
  • [13] Infinite products of finite simple groups II
    Thomas, S
    JOURNAL OF GROUP THEORY, 1999, 2 (04) : 401 - 434
  • [14] Probabilistic generation of finite simple groups, II
    Breuer, Thomas
    Guralnick, Robert M.
    Kantor, William M.
    JOURNAL OF ALGEBRA, 2008, 320 (02) : 443 - 494
  • [15] Distinguishing crystallographic groups by their finite quotients
    Piwek, Pawel
    Popovic, David
    Wilkes, Gareth
    JOURNAL OF ALGEBRA, 2021, 565 : 548 - 563
  • [16] Determining Fuchsian groups by their finite quotients
    M. R. Bridson
    M. D. E. Conder
    A. W. Reid
    Israel Journal of Mathematics, 2016, 214 : 1 - 41
  • [17] Discrete groups without finite quotients
    Cremaschi, Tommaso
    Souto, Juan
    TOPOLOGY AND ITS APPLICATIONS, 2018, 248 : 138 - 142
  • [18] Simple images of triangle groups
    Wilson, JS
    QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (200): : 523 - 531
  • [19] GROUPS WHOSE FINITE QUOTIENTS ARE SUPERSOLUBLE
    SEGAL, D
    JOURNAL OF ALGEBRA, 1975, 35 (1-3) : 56 - 71
  • [20] FINITE QUOTIENTS AND MULTIPLICITIES IN NILPOTENT GROUPS
    PICKEL, PF
    ILLINOIS JOURNAL OF MATHEMATICS, 1982, 26 (01) : 155 - 163