Strain Tuning of the Anisotropy in the Optoelectronic Properties of TiS3

被引:19
|
作者
Silva-Guillen, J. A. [1 ,2 ]
Canadell, E. [3 ]
Guinea, F. [2 ,4 ]
Roldan, R. [5 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[2] Fdn IMDEA Nanociencia, C Faraday 9,Campus Cantoblanco, Madrid 28049, Spain
[3] CSIC, Inst Ciencia Mat Barcelona ICMAB, Campus Bellaterra, Bellaterra 08193, Spain
[4] Univ Manchester, Dept Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
[5] CSIC, ICMM, Mat Sci Factory, Sor Juana Ines de la Cruz 3, Madrid 28049, Spain
来源
ACS PHOTONICS | 2018年 / 5卷 / 08期
关键词
transition metal trichalcogenides; 2D materials; strain; anisotropy tuning; plasmons; optoelectronics; TRANSITION-METAL TRICHALCOGENIDES; TITANIUM TRISULFIDE TIS3; SINGLE-LAYER; ELECTRONIC-PROPERTIES; SEMICONDUCTOR; GAP; PSEUDOPOTENTIALS; CRYSTALS;
D O I
10.1021/acsphotonics.8b00467
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The benefits of two-dimensional (2D) materials for applications in nanotechnology can be widened by exploiting the intrinsic anisotropy of some of those crystals, being black phosphorus the most well-known example. In this work we demonstrate that the anisotropy of TiS3, which is even stronger than that of black phosphorus, can be tuned by means of strain engineering. Using density functional theory calculations, we find that the ellipticity of the valence band can be inverted under moderate compressive strain, which is accompanied by an enhancement of the optical absorption. It is shown that the strain tuning of the band anisotropy can be exploited to focus plasmons in the desired direction, a feature that could be used to design TiS3 nanostructures with switchable plasmon channeling.
引用
收藏
页码:3231 / 3237
页数:13
相关论文
共 50 条
  • [11] ELECTRICAL-CONDUCTIVITY OF TIS3
    KIKKAWA, S
    KOIZUMI, M
    YAMANAKA, S
    ONUKI, Y
    TANUMA, S
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1980, 61 (01): : K55 - K57
  • [12] TiS3 nanoribbons: Width-independent band gap and strain-tunable electronic properties
    Kang, Jun
    Sahin, Hasan
    Ozaydin, H. Duygu
    Senger, R. Tugrul
    Peeters, Francois M.
    PHYSICAL REVIEW B, 2015, 92 (07)
  • [13] ELECTRICAL TRANSPORT MEASUREMENTS IN TIS3
    FINKMAN, E
    FISHER, B
    SOLID STATE COMMUNICATIONS, 1984, 50 (01) : 25 - 28
  • [14] Transport coefficients of layered TiS3
    Biele, Robert
    D'Agosta, Roberto
    PHYSICAL REVIEW MATERIALS, 2022, 6 (01):
  • [15] INFRARED-SPECTRA OF TIS3
    JANDL, S
    DESLANDES, J
    BANVILLE, M
    INFRARED PHYSICS, 1982, 22 (06): : 327 - 329
  • [16] Magnetic Behavior in TiS3 Nanoribbon
    Lai, Shengqiang
    Du, Yongping
    MATERIALS, 2019, 12 (21)
  • [17] TiS2 and TiS3 layered materials: Intercalation and/or substitution to enhance the thermoelectric properties
    Maignan, Antoine
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [18] ZrSe3-Type Variant of TiS3: Structure and Thermoelectric Properties
    Guilmeau, Emmanuel
    Berthebaud, David
    Misse, Patrick R. N.
    Hebert, Sylvie
    Lebedev, Oleg I.
    Chateigner, Daniel
    Martin, Christine
    Maignan, Antoine
    CHEMISTRY OF MATERIALS, 2014, 26 (19) : 5585 - 5591
  • [19] CHEMISTRY OF NBSE3 AND TIS3 CATHODES
    MURPHY, DW
    TRUMBORE, FA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1975, 122 (03) : C68 - C68
  • [20] Robust band gap of TiS3 nanofilms
    Kang, Jun
    Wang, Lin-Wang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (22) : 14805 - 14809