Lyapunov-based model predictive control trajectory tracking for an autonomous underwater vehicle with external disturbances

被引:44
|
作者
Gong, Peng [1 ]
Yan, Zheping [1 ]
Zhang, Wei [1 ]
Tang, Jialing [1 ,2 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
[2] Natl Deep Sea Ctr, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
Autonomous underwater vehicle; Model predictive control; Trajectory tracking; Nonlinear backstepping control; RECEDING HORIZON CONTROL;
D O I
10.1016/j.oceaneng.2021.109010
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper focus on the trajectory tracking of autonomous underwater vehicles (AUVs) in complex ocean environments. A novel Lyapunov-based Model Predictive Control (LMPC) framework is designed for AUV, which improves the performance of trajectory tracking through online optimization. By incorporating salient features of Lyapunov-based nonlinear backstepping control, the contraction constraint is constructed to ensure the closed-loop stability. Within this framework, the actual limitation of executor saturation could be clearly considered. Next, the recursive feasibility and closed-loop stability of the LMPC-based control are rigorously proved. Also, the guaranteed region of attraction (ROA) is clearly described. Finally, the simulation results demonstrate the feasibility and robustness of the designed LMPC trajectory tracking method.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Backstepping control integrated with Lyapunov-based model predictive control
    Kim, Yeonsoo
    Oh, Tae Hoon
    Park, Taekyoon
    Lee, Jong Min
    JOURNAL OF PROCESS CONTROL, 2019, 73 : 137 - 146
  • [42] Trajectory tracking with external disturbance of bionic underwater robot based on CPG and robust model predictive control
    Yang, Haoyu
    Yan, Zheping
    Zhang, Wei
    Gong, Qingshuo
    Zhang, Yu
    Zhao, Luoyin
    OCEAN ENGINEERING, 2022, 263
  • [43] Robust Lyapunov-based design for autonomous underwater vehicles
    Conte, G
    Serrani, A
    ROBOT CONTROL 1997, VOLS 1 AND 2, 1998, : 301 - 306
  • [44] Adaptive Generalized Dynamic Inversion based Trajectory Tracking Control of Autonomous Underwater Vehicle
    Ansari, Uzair
    Bajodah, Abdulrahman H.
    Alam, Saqib
    2018 26TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2018, : 588 - 594
  • [45] Robust trajectory tracking control for an underactuated autonomous underwater vehicle based on bioinspired neurodynamics
    Jiang, Yunbiao
    Guo, Chen
    Yu, Haomiao
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2018, 15 (05):
  • [46] Trajectory tracking control for autonomous underwater vehicle based on rotation matrix attitude representation
    Zhu, Cheng
    Jun, Li
    Huang, Bing
    Su, Yumin
    Zheng, YuXin
    OCEAN ENGINEERING, 2022, 252
  • [47] Deep Reinforcement Learning Based Optimal Trajectory Tracking Control of Autonomous Underwater Vehicle
    Yu, Runsheng
    Shi, Zhenyu
    Huang, Chaoxing
    Li, Tenglong
    Ma, Qiongxiong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 4958 - 4965
  • [48] Predictive Trajectory Tracking Control of Autonomous Underwater Vehicles Based on Variable Fuzzy Predictor
    Jianchuan Yin
    Ning Wang
    International Journal of Fuzzy Systems, 2021, 23 : 1809 - 1822
  • [49] Predictive Trajectory Tracking Control of Autonomous Underwater Vehicles Based on Variable Fuzzy Predictor
    Yin, Jianchuan
    Wang, Ning
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (06) : 1809 - 1822
  • [50] Tracking Trajectory for an Autonomous Underwater Vehicle: A Nonlinear Controllers Comparison under Maritime Disturbances
    Imba, Dario
    Escobar, Pablo
    Leica, Paulo
    Camacho, Oscar
    Chavez, Danilo
    2017 IEEE 3RD COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC), 2017,