New Lithium Salts in Electrolytes for Lithium-Ion Batteries (Review)

被引:43
|
作者
Bushkova, O. V. [1 ,2 ]
Yaroslavtseva, T. V. [1 ]
Dobrovolsky, Yu. A. [2 ]
机构
[1] Russian Acad Sci, Inst High Temp Electrochem, Ural Branch, Ekaterinburg 620990, Russia
[2] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Moscow Oblast, Russia
关键词
lithium-ion batteries; liquid nonaqueous electrolytes; new lithium salts; dipolar aprotic solvents; physicochemical properties; compatibility with electrode materials; prospects of practical application; NONAQUEOUS ELECTROLYTES; THERMAL-STABILITY; ELECTROCHEMICAL PROPERTIES; ALUMINUM CORROSION; CATHODE MATERIALS; PERFLUOROALKYLSULFONYL IMIDES; LIPF3(CF2CF3)(3) LIFAP; LIQUID ELECTROLYTES; LIPF6; ELECTROLYTES; LITHIATED GRAPHITE;
D O I
10.1134/S1023193517070035
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The properties of electrolyte systems based on standard nonaqueous solvent composed of a mixture of dialkyl and alkylene carbonates and new commercially available lithium salts potentially capable of being an alternative to thermally unstable and chemically active lithium hexafluorophosphate LiPF6 in the mass production of lithium-ion rechargeable batteries are surveyed. The advantages and drawbacks of electrolytes containing lithium salts alternative to LiPF6 are discussed. The real prospects of substitution for LiPF6 in electrolyte solutions aimed at improving the functional characteristics of lithium-ion batteries are assessed. Special attention is drawn to the efficient use of new lithium salts in the cells with electrodes based on materials predominantly used in the current mass production of lithium-ion batteries: grafitic carbon (negative electrode), LiCoO2, LiMn2O4, LiFePO4,and also solid solutions isostructural to lithium cobaltate with the general composition LiMO2 (M = Co, Mn, Ni, Al) (positive electrode).
引用
收藏
页码:677 / 699
页数:23
相关论文
共 50 条
  • [31] New electrode materials for lithium-ion batteries (Review)
    T. L. Kulova
    Russian Journal of Electrochemistry, 2013, 49 : 1 - 25
  • [32] Selection of new Kynar-based electrolytes for lithium-ion batteries
    Christie, AM
    Christie, L
    Vincent, CA
    JOURNAL OF POWER SOURCES, 1998, 74 (01) : 77 - 86
  • [33] A review of lithium deposition in lithium-ion and lithium metal secondary batteries
    Li, Zhe
    Huang, Jun
    Liaw, Bor Yann
    Metzler, Viktor
    Zhang, Jianbo
    JOURNAL OF POWER SOURCES, 2014, 254 : 168 - 182
  • [34] Research Progresses of Liquid Electrolytes in Lithium-Ion Batteries
    Liu, Yu-Kun
    Zhao, Chen-Zi
    Du, Juan
    Zhang, Xue-Qiang
    Chen, Ai-Bing
    Zhang, Qiang
    SMALL, 2023, 19 (08)
  • [35] Sulfone-based electrolytes for lithium-ion batteries
    Xu, K
    Angell, CA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (07) : A920 - A926
  • [36] A Patent Landscape on Liquid Electrolytes for Lithium-Ion Batteries
    Ershadi, Mahshid
    Javanbakht, Mehran
    Beheshti, Seyed Hamid Reza
    Mosallanejad, Behrooz
    Kiaei, Zahra
    ANALYTICAL & BIOANALYTICAL ELECTROCHEMISTRY, 2018, 10 (12): : 1629 - 1653
  • [37] Functionalized ionic liquids as electrolytes for lithium-ion batteries
    Pandian, Shanthi
    Raju, S. G.
    Hariharan, Krishnan S.
    Kolake, Subramanya M.
    Park, Da-Hye
    Lee, Myung-Jin
    JOURNAL OF POWER SOURCES, 2015, 286 : 204 - 209
  • [38] High-Entropy Electrolytes for Lithium-Ion Batteries
    Wang, Qidi
    Wang, Jianlin
    Heringa, Jouke R.
    Bai, Xuedong
    Wagemaker, Marnix
    ACS ENERGY LETTERS, 2024, 9 (08): : 3796 - 3806
  • [39] Ceramic and polymeric solid electrolytes for lithium-ion batteries
    Fergus, Jeffrey W.
    JOURNAL OF POWER SOURCES, 2010, 195 (15) : 4554 - 4569
  • [40] Protic ionic liquids as electrolytes for lithium-ion batteries
    Menne, S.
    Pires, J.
    Anouti, M.
    Balducci, A.
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 : 39 - 41