Microstructure anomaly during welding and its influence on the mechanical properties of dissimilar weldments of P92 martensitic steel and AISI 304L austenitic stainless steel

被引:21
|
作者
Dak, Gaurav [1 ]
Pandey, Chandan [1 ]
机构
[1] Indian Inst Technol IIT Jodhpur, Dept Mech Engn, Karwar 342037, Rajasthan, India
关键词
P92; steel; 304L stainless steel; Gas tungsten arc welding (GTAW); Thermanit MTS 616 filler; Mechanical properties; RESIDUAL-STRESSES; TENSILE PROPERTIES; RUPTURE BEHAVIOR; NOTCH GEOMETRY; FERRITIC STEEL; METAL JOINTS; PIPE; DEFORMATION; WELDABILITY; TEMPERATURE;
D O I
10.1016/j.jmapro.2022.06.048
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this investigation, microstructural characteristics, mechanical properties, and residual stress magnitude of dissimilar weld joints (DWJs) between creep strength enhanced ferritic-martensitic (CSEF) P92 steel and austenitic stainless steel (ASS) 304L has been investigated. The Thermanit MTS 616 (P92 filler) filler metal was employed to prepare P92/304L SS DWJs. The groove geometry also plays a crucial role in DWJs, so the conventional V-groove and narrow shape groove geometry was adopted for P92/304L SS DWJs. The microstructure characterization was performed using optical microscope (OM), scanning electron microscope (SEM), and filed emission SEM (FESEM). The microstructural examination showed the formation of the delta-ferrite grains and unmixed zone (UZ) at the weld interface. The martensitic microstructure produced after welding is brittle due to quenched martensite and the dissolution of precipitates. Thus, the post-weld heat treatment (PWHT) known as tempering was carried out at 760 C for the period of 2 h to get tempered martensitic microstructure. The ultimate tensile strength (UTS) of the as-weld (AW) and PWHT tensile specimen of the P92/304L SS DWJs was 660 MPa and 643 MPa, respectively for V-groove geometry specimens and 640 MPa and 609 MPa, respectively for narrow groove geometry specimens. The tensile fracture was experienced at 304L base metal, and the UTS value of DWJs was very close to the UTS of the 304L SS. The average microhardness value of the martensitic weld metal (352HV0.5) and coarse-grain heat-affected zone (CGHAZ, 366HV0.5), fine grain HAZ (FGHAZ, 320HV0.5) in the AW state was beyond the maximum permissible hardness value of 265HV0.5, as per the A335/A335M - 15a standard. The hardness value beyond 265HV0.5 indicates the undesirable brittle martensitic microstructure. After PWHT, the micro-hardness value of the CGHAZ (235HV0.5), FGHAZ (215HV0.5), and inter-critical HAZ (ICHAZ, 201HV0.5) was below the maximum allowable value of 265HV0.5 for P92 material because of the tempering of the quenched martensite. However, the Charpy test result concluded that the problem associated with the martensitic P92 filler is to obtain an acceptable value of the impact toughness of weld metal in AW state. The Charpy impact toughness of weld metal for P92/304L SS DWJs in AW condition was 10 J (V-groove geometry) and 37 J (narrow groove geometry), while for PWHT condition, it was 188 J (V-groove geometry) and 150 J (narrow groove geometry). The impact toughness of the P92 filler weld was below the minimum requirement of 47 J (EN ISO 3580:2017) in AW state. However, the impact toughness of the welds made by using P92 filler metal met the minimum requirement of 47 J (EN ISO 3580:2017) after PWHT due to the tempering of the martensite. The residual stress analysis using deep hole drilling (DHD) technique revealed the existence of the compressive residual stresses in the weld metal and P92 HAZ in as-weld and PWHT condition. The compressive stress was dominant because of the martensitic phase transformation.
引用
收藏
页码:829 / 851
页数:23
相关论文
共 50 条
  • [31] Effect of heat input on mechanical and metallurgical properties of AISI 304L stainless steel by using TIG welding
    Roy, Angshuman
    Ghosh, Nabendu
    Mondal, Subrata
    WELDING INTERNATIONAL, 2023, 37 (02) : 91 - 100
  • [32] Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments
    Unnikrishnan, Rahul
    Idury, K. S. N. Satish
    Ismail, T. P.
    Bhadauria, Alok
    Shekhawat, S. K.
    Khatirkar, Rajesh K.
    Sapate, Sanjay G.
    MATERIALS CHARACTERIZATION, 2014, 93 : 10 - 23
  • [33] Evolutions of mechanical properties of AISI 304L stainless steel under shear loading
    Zergani, Aqil
    Mirzadeh, Hamed
    Mahmudi, Reza
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 791
  • [34] Mechanical properties estimation of AISI 304L stainless steel sheet using SPT
    Eduardo Fierro, Victor
    Alvarez Villar, Nelson
    Wenger, Esteban
    Ansaldi, Andrea
    Gabarain, Rodrigo
    MATERIA-RIO DE JANEIRO, 2018, 23 (02):
  • [35] Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties
    Akramifard, H. R.
    Mirzadeh, H.
    Parsa, M. H.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 613 : 232 - 239
  • [36] Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures
    Desu, Raghuram Karthik
    Krishnamurthy, Hansoge Nitin
    Balu, Aditya
    Gupta, Amit Kumar
    Singh, Swadesh Kumar
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2016, 5 (01): : 13 - 20
  • [37] Dynamic mechanical properties of austenitic 304L stainless steel with different strain rates
    Jiao Yufeng
    Hou Yanli
    FUNCTIONAL MATERIALS, 2020, 27 (01): : 93 - 99
  • [38] Influence of flow conditions on the corrosion of AISI 304L stainless steel
    Wharton, JA
    Wood, RJK
    WEAR, 2004, 256 (05) : 525 - 536
  • [39] Investigation of numerical modelling of TIG welding of austenitic stainless steel (304L)
    Kumar, Pramod
    Kumar, Rajesh
    Arif, Abdul
    Veerababu, M.
    MATERIALS TODAY-PROCEEDINGS, 2020, 27 : 1636 - 1640
  • [40] Influence of filler materials on GTAW dissimilar welds: Inconel 718 and austenitic stainless steel 304L
    Kumar, Niraj
    Kumar, Prakash
    Pandey, Chandan
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2024, 24 (04)