cyclicity of elliptic segment loops;
reversible quadratic Hamiltonian systems;
D O I:
10.1016/j.jde.2004.04.003
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Denote by Q(H) and Q(R) the Hamiltonian class and reversible class of quadratic integrable systems. There are several topological types for systems belong to Q(H) boolean AND Q(R). One of them is the case that the corresponding system has two heteroclinic loops, sharing one saddle-connection, which is a line segment, and the other part of the loops is an ellipse. In this paper we prove that the maximal number of limit cycles, which bifurcate from the loops with respect to quadratic perturbations in a conic neighborhood of the direction transversal to reversible systems (called in reversible direction), is two. We also give the corresponding bifurcation diagram. (C) 2004 Elsevier Inc. All rights reserved.
机构:
Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
Cen, Xiuli
Liu, Changjian
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
Liu, Changjian
Sun, Yangjian
论文数: 0引用数: 0
h-index: 0
机构:
Shangrao Normal Univ, Sch Math & Comp Sci, Shangrao 334001, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
Sun, Yangjian
Wang, Jihua
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math, Guangzhou 512075, Guangdong, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
Zhaoqing Univ, Dept Math, Zhaoqing 526061, Guangdong, Peoples R ChinaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
Shao, Yi
Zhao, Yulin
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R ChinaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
Zhaoqing Univ, Dept Math, Zhaoqing 526061, Guangdong, Peoples R ChinaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
Shao, Yi
Zhao, Yulin
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R ChinaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
机构:
Beijing Normal Univ, Sch Math Sci, Xinjiekouwai Str 19, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Xinjiekouwai Str 19, Beijing 100875, Peoples R China
Zhou, Jinping
Zhao, Liqin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Xinjiekouwai Str 19, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Xinjiekouwai Str 19, Beijing 100875, Peoples R China
Zhao, Liqin
Wang, Jiaxin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Xinjiekouwai Str 19, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Xinjiekouwai Str 19, Beijing 100875, Peoples R China
Wang, Jiaxin
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS,
2021,
31
(13):