Early battery performance prediction for mixed use charging profiles using hierarchal machine learning

被引:11
|
作者
Kunz, M. Ross [1 ]
Dufek, Eric J. [2 ]
Yi, Zonggen [2 ]
Gering, Kevin L. [2 ]
Shirk, Matthew G. [2 ]
Smith, Kandler [3 ]
Chen, Bor-Rong [2 ]
Wang, Qiang [2 ]
Gasper, Paul [3 ]
Bewley, Randy L. [2 ]
Tanim, Tanvir R. [2 ]
机构
[1] Idaho Natl Lab, Biol & Chem Proc Dept, Idaho Falls, ID 83415 USA
[2] Idaho Natl Lab, Energy Storage & Adv Transportat Dept, Idaho Falls, ID 83415 USA
[3] Natl Renewable Energy Lab, Energy Convers & Storage Syst Ctr, Golden, CO 80401 USA
关键词
Battery performance prediction; Machine learning; Elastic Net; Calendar aging; Cycle life; REGRESSION; PHYSICS; MODELS; RANGE;
D O I
10.1002/batt.202100079
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A key step limiting how fast batteries can be deployed is the time necessary to provide evaluation and validation of performance. Using data analysis approaches, such as machine learning, the validation process can be accelerated. However, questions on the validity of projecting models trained on limited data or simple cycling profiles, such as constant current cycling, to real-world scenarios with complex loads remains. Here, we present the ability to predict performance with less than 1.2 % mean absolute percent error when trained on cells aged using complex electric vehicle discharge profiles, and either AC Level 2 charge or DC Fast charge profiles, using only the first 45 cycles, namely 5 % of the total testing time. While error is low across the projections, this study also highlights that battery lifetime analysis using only cycling data may not extrapolate safely to certain real-world conditions due to the impact of calendar degradation.
引用
收藏
页码:1186 / 1196
页数:11
相关论文
共 50 条
  • [11] Practical early prediction of students' performance using machine learning and eXplainable AI
    Jang, Yeonju
    Choi, Seongyune
    Jung, Heeseok
    Kim, Hyeoncheol
    EDUCATION AND INFORMATION TECHNOLOGIES, 2022, 27 (09) : 12855 - 12889
  • [12] Early prediction of battery lifetime via a machine learning based framework
    Fei, Zicheng
    Yang, Fangfang
    Tsui, Kwok-Leung
    Li, Lishuai
    Zhang, Zijun
    ENERGY, 2021, 225
  • [13] Electric Vehicle Charging Behavior Prediction using Machine Learning Models
    Rajagopalan, Prashanth
    Ranganathan, Prakash
    2022 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2022, : 123 - 128
  • [14] Prediction of Atmospheric Profiles With Machine Learning Using the Signature Method
    Fujita, M.
    Sugiura, N.
    Kouketsu, S.
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (06)
  • [15] Prediction and Visualisation of SICONV Project Profiles Using Machine Learning
    Andrade, Adriano de Oliveira
    Marques, Leonardo Garcia
    Resende, Osvaldo
    de Oliveira, Geraldo Andrade
    Souza, Leandro Rodrigues da Silva
    Pereira, Adriano Alves
    SYSTEMS, 2022, 10 (06):
  • [16] Prediction of Battery Cycle Life Using Early-Cycle Data, Machine Learning and Data Management
    Celik, Belen
    Sandt, Roland
    dos Santos, Lara Caroline Pereira
    Spatschek, Robert
    BATTERIES-BASEL, 2022, 8 (12):
  • [17] Early Prediction of Cardiogenic Shock Using Machine Learning
    Chang, Yale
    Antonescu, Corneliu
    Ravindranath, Shreyas
    Dong, Junzi
    Lu, Mingyu
    Vicario, Francesco
    Wondrely, Lisa
    Thompson, Pam
    Swearingen, Dennis
    Acharya, Deepak
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [18] Early Prediction of Heart Anomalies Using Machine Learning
    Sophia, B.
    Sri, M. Nithiya
    Sarulatha, R.
    Shamsudin, Shahan
    SOFT COMPUTING FOR SECURITY APPLICATIONS, ICSCS 2022, 2023, 1428 : 353 - 365
  • [19] Using Machine Learning for early prediction of Heart Disease
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    Iammarino, Martina
    Montano, Debora
    Verdone, Chiara
    2022 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (IEEE EAIS 2022), 2022,
  • [20] Prediction of Battery Remaining Useful Life Using Machine Learning Algorithms
    Sekhar, J. N. Chandra
    Domathoti, Bullarao
    Gonzalez, Ernesto D. R. Santibanez
    SUSTAINABILITY, 2023, 15 (21)