Fractional Integral Inequalities of Hermite-Hadamard Type for (h,g;m)-Convex Functions with Extended Mittag-Leffler Function

被引:3
|
作者
Andric, Maja [1 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Matice hrvatske 15, Split 21000, Croatia
关键词
fractional calculus; Mittag-Leffler function; convex function; Hermite-Hadamard inequality;
D O I
10.3390/fractalfract6060301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several fractional integral inequalities of the Hermite-Hadamard type are presented for the class of (h,g;m)-convex functions. Applied fractional integral operators contain extended generalized Mittag-Leffler functions as their kernel, thus enabling new fractional integral inequalities that extend and generalize the known results. As an application, the upper bounds of fractional integral operators for (h,g;m)-convex functions are given.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s,m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 499 - 510
  • [22] Fractional Hermite-Hadamard inequalities for (α,m)-logarithmically convex functions
    Jianhua Deng
    JinRong Wang
    Journal of Inequalities and Applications, 2013
  • [23] Integral inequalities of Hermite-Hadamard type for (α, m)-GA-convex functions
    Ji, Ai-Ping
    Zhang, Tian-Yu
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 255 - 265
  • [24] Fractional Hermite-Hadamard inequalities for (α, m)-logarithmically convex functions
    Deng, Jianhua
    Wang, JinRong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [25] EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION APPLIED ON FRACTIONAL INTEGRAL INEQUALITIES
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    Siddique, Muhammad Usama
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1171 - 1184
  • [26] Integral inequalities of the Hermite-Hadamard type for (α, m)-GA-convex functions
    Shuang, Ye
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1854 - 1860
  • [27] INEQUALITIES OF HERMITE-HADAMARD TYPE FOR EXTENDED HARMONICALLY (s, m)-CONVEX FUNCTIONS
    He, Chun-Ying
    Xi, Bo-Yan
    Guo, Bai-Ni
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 245 - 258
  • [28] Generalizations of Hermite-Hadamard Type Integral Inequalities for Convex Functions
    Wu, Ying
    Yin, Hong-Ping
    Guo, Bai-Ni
    AXIOMS, 2021, 10 (03)
  • [29] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS
    Aslani, S. Mohammadi
    Delavar, M. Rostamian
    Vaezpour, S. M.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (01): : 17 - 33
  • [30] Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function
    Farid, Ghulam
    Abbas, Ghulam
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 23 - 35